{"title":"改善室内空气质量,应对COVID - 19病毒","authors":"Ibrahim Al Awadhi, Ashok Sharma, Twana Karim","doi":"10.2118/208151-ms","DOIUrl":null,"url":null,"abstract":"\n \n \n One of the main concerns of Oil & Gas Plants and associated Buildings is how to improve indoor air quality (IAQ) and tackling viruses. IAQ can be affected, or may become under high risk by some of nearby gases, microbial contaminates or energy stressor that affect the HSE condition. This paper presents the main factors that been considered to provide practical solutions to achieve high IAQ and tackling viruses (such as COVID-19).\n \n \n \n IAQ refers to the air quality within and around the plants/buildings. IAQ can usually be affected, or may become under high risk by nearby gases, particulates, microbial contaminates or any mass that affect 100% HSE. Inadequate air quality in building will increase the risk and impact on transferring viruses to people (such as COVID and Flue) and equipment performance (such as equipment failure, components corrosion and short circuits on control board). Survey and data was recorded to evaluate air quality performance in atmosphere instead of assuming it. Accordingly, the impact of inadequate IAQ was studied and evaluated.\n \n \n \n The international standard set a good IAQ in respect of gas concentration and human who works inside buildings in a way that less than 50% people should not detect any odor, 25% should not experience discomfort, 10% should not suffer from mucosal irritation and 5% should not experience annoyance. Study concluded that inadequate IAQ inside the building will affect people performance/health and installed equipment performance. In addition, improper HVAC system operation will be become breeding site for odor causing mold and bacteria, specifically on cooling coil. Hence, several technics were studied to improve IAQ, by installing Ultraviolet (UV) light to stop growing bacterial inside the HVAC system, installing chemical filter in air intakes to remove atmospheric dust, gases and bacteria by 100%, upgrading filtration efficiency to MERV-13 or highest achievable to capture at least 75 – 95% of airborne particles between 0.3 and 1.0 micron, increase outdoor air ventilation and temperature/humidity control.\n The performance of HVAC system and quality of air inside building were monitored by simulating IAQ based on ISO 16890, filters life cycle, energy consumption, and the results were found 100% satisfactory and provided solutions that are now successfully implemented in all new and some of the existing buildings.\n \n \n \n There are several buildings with similar issues and these approach/technics now being adopted in new constructed/existing buildings to protect human and asset integrity, which will support ADNOC Way by sustaining safe environment operation, lower health risk, reduce of equipment failure, reduce maintenance cost and 100% HSE. There are numbers of occupied buildings across the world were surrounded by aggressive gases/pollution with poor IAQ and above approaches it can be followed to realize larger benefits.\n","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Indoor Air Quality and Tackling COVID - 19 Virus\",\"authors\":\"Ibrahim Al Awadhi, Ashok Sharma, Twana Karim\",\"doi\":\"10.2118/208151-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n One of the main concerns of Oil & Gas Plants and associated Buildings is how to improve indoor air quality (IAQ) and tackling viruses. IAQ can be affected, or may become under high risk by some of nearby gases, microbial contaminates or energy stressor that affect the HSE condition. This paper presents the main factors that been considered to provide practical solutions to achieve high IAQ and tackling viruses (such as COVID-19).\\n \\n \\n \\n IAQ refers to the air quality within and around the plants/buildings. IAQ can usually be affected, or may become under high risk by nearby gases, particulates, microbial contaminates or any mass that affect 100% HSE. Inadequate air quality in building will increase the risk and impact on transferring viruses to people (such as COVID and Flue) and equipment performance (such as equipment failure, components corrosion and short circuits on control board). Survey and data was recorded to evaluate air quality performance in atmosphere instead of assuming it. Accordingly, the impact of inadequate IAQ was studied and evaluated.\\n \\n \\n \\n The international standard set a good IAQ in respect of gas concentration and human who works inside buildings in a way that less than 50% people should not detect any odor, 25% should not experience discomfort, 10% should not suffer from mucosal irritation and 5% should not experience annoyance. Study concluded that inadequate IAQ inside the building will affect people performance/health and installed equipment performance. In addition, improper HVAC system operation will be become breeding site for odor causing mold and bacteria, specifically on cooling coil. Hence, several technics were studied to improve IAQ, by installing Ultraviolet (UV) light to stop growing bacterial inside the HVAC system, installing chemical filter in air intakes to remove atmospheric dust, gases and bacteria by 100%, upgrading filtration efficiency to MERV-13 or highest achievable to capture at least 75 – 95% of airborne particles between 0.3 and 1.0 micron, increase outdoor air ventilation and temperature/humidity control.\\n The performance of HVAC system and quality of air inside building were monitored by simulating IAQ based on ISO 16890, filters life cycle, energy consumption, and the results were found 100% satisfactory and provided solutions that are now successfully implemented in all new and some of the existing buildings.\\n \\n \\n \\n There are several buildings with similar issues and these approach/technics now being adopted in new constructed/existing buildings to protect human and asset integrity, which will support ADNOC Way by sustaining safe environment operation, lower health risk, reduce of equipment failure, reduce maintenance cost and 100% HSE. There are numbers of occupied buildings across the world were surrounded by aggressive gases/pollution with poor IAQ and above approaches it can be followed to realize larger benefits.\\n\",\"PeriodicalId\":11069,\"journal\":{\"name\":\"Day 2 Tue, November 16, 2021\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, November 16, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208151-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208151-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Indoor Air Quality and Tackling COVID - 19 Virus
One of the main concerns of Oil & Gas Plants and associated Buildings is how to improve indoor air quality (IAQ) and tackling viruses. IAQ can be affected, or may become under high risk by some of nearby gases, microbial contaminates or energy stressor that affect the HSE condition. This paper presents the main factors that been considered to provide practical solutions to achieve high IAQ and tackling viruses (such as COVID-19).
IAQ refers to the air quality within and around the plants/buildings. IAQ can usually be affected, or may become under high risk by nearby gases, particulates, microbial contaminates or any mass that affect 100% HSE. Inadequate air quality in building will increase the risk and impact on transferring viruses to people (such as COVID and Flue) and equipment performance (such as equipment failure, components corrosion and short circuits on control board). Survey and data was recorded to evaluate air quality performance in atmosphere instead of assuming it. Accordingly, the impact of inadequate IAQ was studied and evaluated.
The international standard set a good IAQ in respect of gas concentration and human who works inside buildings in a way that less than 50% people should not detect any odor, 25% should not experience discomfort, 10% should not suffer from mucosal irritation and 5% should not experience annoyance. Study concluded that inadequate IAQ inside the building will affect people performance/health and installed equipment performance. In addition, improper HVAC system operation will be become breeding site for odor causing mold and bacteria, specifically on cooling coil. Hence, several technics were studied to improve IAQ, by installing Ultraviolet (UV) light to stop growing bacterial inside the HVAC system, installing chemical filter in air intakes to remove atmospheric dust, gases and bacteria by 100%, upgrading filtration efficiency to MERV-13 or highest achievable to capture at least 75 – 95% of airborne particles between 0.3 and 1.0 micron, increase outdoor air ventilation and temperature/humidity control.
The performance of HVAC system and quality of air inside building were monitored by simulating IAQ based on ISO 16890, filters life cycle, energy consumption, and the results were found 100% satisfactory and provided solutions that are now successfully implemented in all new and some of the existing buildings.
There are several buildings with similar issues and these approach/technics now being adopted in new constructed/existing buildings to protect human and asset integrity, which will support ADNOC Way by sustaining safe environment operation, lower health risk, reduce of equipment failure, reduce maintenance cost and 100% HSE. There are numbers of occupied buildings across the world were surrounded by aggressive gases/pollution with poor IAQ and above approaches it can be followed to realize larger benefits.