{"title":"支持向量机在软土区深基坑变形预测中的应用","authors":"Fuxue Sun","doi":"10.1109/MVHI.2010.167","DOIUrl":null,"url":null,"abstract":"Based on the measured deformation data series, future deformation value of deep foundation pit was predicted using Support Vector Machine (SVM) model in soft soil area. Gauss kernel function, Sequential minimal optimization arithmetic, and the parameter value of C andε were determined by testing. By using the method in example, results are shown to be in good agreement with measured data and laws reported in paper, and illustrates that SVM could perform well in solving fuzzy geotechnical engineering problem similar to deformation prediction. As another act, the method and conclusion can be considered as reference for colleagues.","PeriodicalId":34860,"journal":{"name":"HumanMachine Communication Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"SVM in Predicting the Deformation of Deep Foundation Pit in Soft Soil Area\",\"authors\":\"Fuxue Sun\",\"doi\":\"10.1109/MVHI.2010.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the measured deformation data series, future deformation value of deep foundation pit was predicted using Support Vector Machine (SVM) model in soft soil area. Gauss kernel function, Sequential minimal optimization arithmetic, and the parameter value of C andε were determined by testing. By using the method in example, results are shown to be in good agreement with measured data and laws reported in paper, and illustrates that SVM could perform well in solving fuzzy geotechnical engineering problem similar to deformation prediction. As another act, the method and conclusion can be considered as reference for colleagues.\",\"PeriodicalId\":34860,\"journal\":{\"name\":\"HumanMachine Communication Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HumanMachine Communication Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVHI.2010.167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HumanMachine Communication Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVHI.2010.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
SVM in Predicting the Deformation of Deep Foundation Pit in Soft Soil Area
Based on the measured deformation data series, future deformation value of deep foundation pit was predicted using Support Vector Machine (SVM) model in soft soil area. Gauss kernel function, Sequential minimal optimization arithmetic, and the parameter value of C andε were determined by testing. By using the method in example, results are shown to be in good agreement with measured data and laws reported in paper, and illustrates that SVM could perform well in solving fuzzy geotechnical engineering problem similar to deformation prediction. As another act, the method and conclusion can be considered as reference for colleagues.