{"title":"一类平面三次中心的分段光滑摄动","authors":"Linping Peng, Yue Li, Dandi Sun","doi":"10.1142/s0218127423500682","DOIUrl":null,"url":null,"abstract":"This paper studies the limit cycle bifurcations of a class of planar cubic isochronous centers. For different values of two key parameters, we give an estimate of the maximum number of limit cycles bifurcating from the period annulus of the unperturbed systems under arbitrarily small piecewise smooth polynomial perturbation. The main method and technique are based on the first order averaging theory for discontinuous systems and the Argument Principle in complex analysis.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":"80 1","pages":"2350068:1-2350068:15"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piecewise Smooth Perturbations to a Class of Planar Cubic Centers\",\"authors\":\"Linping Peng, Yue Li, Dandi Sun\",\"doi\":\"10.1142/s0218127423500682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the limit cycle bifurcations of a class of planar cubic isochronous centers. For different values of two key parameters, we give an estimate of the maximum number of limit cycles bifurcating from the period annulus of the unperturbed systems under arbitrarily small piecewise smooth polynomial perturbation. The main method and technique are based on the first order averaging theory for discontinuous systems and the Argument Principle in complex analysis.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":\"80 1\",\"pages\":\"2350068:1-2350068:15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127423500682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423500682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Piecewise Smooth Perturbations to a Class of Planar Cubic Centers
This paper studies the limit cycle bifurcations of a class of planar cubic isochronous centers. For different values of two key parameters, we give an estimate of the maximum number of limit cycles bifurcating from the period annulus of the unperturbed systems under arbitrarily small piecewise smooth polynomial perturbation. The main method and technique are based on the first order averaging theory for discontinuous systems and the Argument Principle in complex analysis.