利用物种分布模型量化鹿与植物群之间的分布和潜在的生物相互作用

IF 2.7 Q1 GEOGRAPHY Annals of GIS Pub Date : 2023-07-03 DOI:10.1080/19475683.2023.2226196
J. O'Mahony, A. Vanmechelen​, P. Holloway
{"title":"利用物种分布模型量化鹿与植物群之间的分布和潜在的生物相互作用","authors":"J. O'Mahony, A. Vanmechelen​, P. Holloway","doi":"10.1080/19475683.2023.2226196","DOIUrl":null,"url":null,"abstract":"ABSTRACT Invasive species are ranked as one of the leading drivers of global biodiversity loss. To mitigate their impact, we must understand the future risks caused by invasive species, particularly to flora of conservation concern. Here we used species distribution modelling (SDM) to project the current and future (RCP45 and RCP85 2050) distributions of four deer species and 13 plant species of conservation concern for the island of Ireland, quantifying changes in distributions and overlap. Large areas of suitable habitat for the deer species were predicted with high accuracy across all counties, with future climate scenarios identifying an expansion in sika deer distributions and a decrease in muntjac and fallow deer distributions. Red deer declined under the moderate climate change scenario but increased under the worst-case projection. Future projections predicted the (local) extinction of six (out of 13) endangered and vulnerable plant species. An expansion in distributions was observed for four plant species; however, these areas had large overlap with the future predictions of deer, placing further pressures on these plant species. These findings suggest that targeted conservation and management measures are required to alleviate the pressures on ‘at-risk’ plant species due to grazing from native and non-native deer.","PeriodicalId":46270,"journal":{"name":"Annals of GIS","volume":"190 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the distribution and potential biotic interactions between deer and flora using species distribution modelling\",\"authors\":\"J. O'Mahony, A. Vanmechelen​, P. Holloway\",\"doi\":\"10.1080/19475683.2023.2226196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Invasive species are ranked as one of the leading drivers of global biodiversity loss. To mitigate their impact, we must understand the future risks caused by invasive species, particularly to flora of conservation concern. Here we used species distribution modelling (SDM) to project the current and future (RCP45 and RCP85 2050) distributions of four deer species and 13 plant species of conservation concern for the island of Ireland, quantifying changes in distributions and overlap. Large areas of suitable habitat for the deer species were predicted with high accuracy across all counties, with future climate scenarios identifying an expansion in sika deer distributions and a decrease in muntjac and fallow deer distributions. Red deer declined under the moderate climate change scenario but increased under the worst-case projection. Future projections predicted the (local) extinction of six (out of 13) endangered and vulnerable plant species. An expansion in distributions was observed for four plant species; however, these areas had large overlap with the future predictions of deer, placing further pressures on these plant species. These findings suggest that targeted conservation and management measures are required to alleviate the pressures on ‘at-risk’ plant species due to grazing from native and non-native deer.\",\"PeriodicalId\":46270,\"journal\":{\"name\":\"Annals of GIS\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of GIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19475683.2023.2226196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475683.2023.2226196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying the distribution and potential biotic interactions between deer and flora using species distribution modelling
ABSTRACT Invasive species are ranked as one of the leading drivers of global biodiversity loss. To mitigate their impact, we must understand the future risks caused by invasive species, particularly to flora of conservation concern. Here we used species distribution modelling (SDM) to project the current and future (RCP45 and RCP85 2050) distributions of four deer species and 13 plant species of conservation concern for the island of Ireland, quantifying changes in distributions and overlap. Large areas of suitable habitat for the deer species were predicted with high accuracy across all counties, with future climate scenarios identifying an expansion in sika deer distributions and a decrease in muntjac and fallow deer distributions. Red deer declined under the moderate climate change scenario but increased under the worst-case projection. Future projections predicted the (local) extinction of six (out of 13) endangered and vulnerable plant species. An expansion in distributions was observed for four plant species; however, these areas had large overlap with the future predictions of deer, placing further pressures on these plant species. These findings suggest that targeted conservation and management measures are required to alleviate the pressures on ‘at-risk’ plant species due to grazing from native and non-native deer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of GIS
Annals of GIS Multiple-
CiteScore
8.30
自引率
2.00%
发文量
31
期刊最新文献
Zero watermarking algorithm for BIM data based on distance partitioning and local feature Controlling for spatial confounding and spatial interference in causal inference: modelling insights from a computational experiment Application of GIS and fuzzy sets to small-scale site suitability assessment for extensive brackish water aquaculture Revealing intra-urban hierarchical spatial structure through representation learning by combining road network abstraction model and taxi trajectory data The time- and distance-decay effects of hurricane relevancy on social media: an empirical study of three hurricanes in the United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1