单信标协同水下全距离导航路径规划

M. Chitre
{"title":"单信标协同水下全距离导航路径规划","authors":"M. Chitre","doi":"10.1109/AIS.2010.5547044","DOIUrl":null,"url":null,"abstract":"Autonomous underwater vehicles (AUVs) that rely on dead reckoning suffer from unbounded localization error growth at a rate dependent on the quality (and cost) of the navigational sensors. Many AUVs surface occasionally to get a GPS position update. Alternatively underwater acoustic beacons such as long baseline (LBL) arrays are used for localization, at the cost of substantial deployment effort. The idea of cooperative localization with a few vehicles with high navigation accuracy (beacon vehicles) among a team of AUVs with poor navigational sensors has recently gained interest. Autonomous surface crafts (ASCs) with GPS, or sophisticated AUVs with expensive navigational sensors may play the role of beacon vehicles. Other AUVs are able to measure their range to these acoustically, and use the resulting information for self-localization. Since a single range measurement is insufficient for unambiguous localization, multiple beacon vehicles are usually required. In this paper, we explore the use of a single beacon vehicle to support multiple AUVs. We develop path planning algorithms for the beacon vehicle that take into account and minimize the errors being accumulated by other AUVs. We show that the generated beacon vehicle path enables the other AUVs to get sufficient information to keep their localization errors bounded over time.","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Path planning for cooperative underwater range-only navigation using a single beacon\",\"authors\":\"M. Chitre\",\"doi\":\"10.1109/AIS.2010.5547044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous underwater vehicles (AUVs) that rely on dead reckoning suffer from unbounded localization error growth at a rate dependent on the quality (and cost) of the navigational sensors. Many AUVs surface occasionally to get a GPS position update. Alternatively underwater acoustic beacons such as long baseline (LBL) arrays are used for localization, at the cost of substantial deployment effort. The idea of cooperative localization with a few vehicles with high navigation accuracy (beacon vehicles) among a team of AUVs with poor navigational sensors has recently gained interest. Autonomous surface crafts (ASCs) with GPS, or sophisticated AUVs with expensive navigational sensors may play the role of beacon vehicles. Other AUVs are able to measure their range to these acoustically, and use the resulting information for self-localization. Since a single range measurement is insufficient for unambiguous localization, multiple beacon vehicles are usually required. In this paper, we explore the use of a single beacon vehicle to support multiple AUVs. We develop path planning algorithms for the beacon vehicle that take into account and minimize the errors being accumulated by other AUVs. We show that the generated beacon vehicle path enables the other AUVs to get sufficient information to keep their localization errors bounded over time.\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/AIS.2010.5547044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/AIS.2010.5547044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

依赖航位推算的自主水下航行器(auv)定位误差的增长速度取决于导航传感器的质量(和成本)。许多auv偶尔会浮出水面以获取GPS位置更新。另外,水声信标(如长基线(LBL)阵列)也可用于定位,但要付出大量部署努力的代价。最近,在一组导航传感器较差的auv中,使用少数具有高导航精度的车辆(信标车辆)进行合作定位的想法引起了人们的兴趣。配备GPS的自主水面舰艇(ASCs)或配备昂贵导航传感器的复杂auv可能扮演信标车辆的角色。其他auv能够通过声学测量其距离,并使用结果信息进行自我定位。由于单一距离测量不足以实现明确定位,因此通常需要多个信标车辆。在本文中,我们探索了使用单个信标车辆来支持多个auv。我们为信标车辆开发了路径规划算法,该算法考虑并最小化了其他auv积累的误差。我们表明,生成的信标车辆路径使其他auv能够获得足够的信息,以保持其定位误差随时间的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Path planning for cooperative underwater range-only navigation using a single beacon
Autonomous underwater vehicles (AUVs) that rely on dead reckoning suffer from unbounded localization error growth at a rate dependent on the quality (and cost) of the navigational sensors. Many AUVs surface occasionally to get a GPS position update. Alternatively underwater acoustic beacons such as long baseline (LBL) arrays are used for localization, at the cost of substantial deployment effort. The idea of cooperative localization with a few vehicles with high navigation accuracy (beacon vehicles) among a team of AUVs with poor navigational sensors has recently gained interest. Autonomous surface crafts (ASCs) with GPS, or sophisticated AUVs with expensive navigational sensors may play the role of beacon vehicles. Other AUVs are able to measure their range to these acoustically, and use the resulting information for self-localization. Since a single range measurement is insufficient for unambiguous localization, multiple beacon vehicles are usually required. In this paper, we explore the use of a single beacon vehicle to support multiple AUVs. We develop path planning algorithms for the beacon vehicle that take into account and minimize the errors being accumulated by other AUVs. We show that the generated beacon vehicle path enables the other AUVs to get sufficient information to keep their localization errors bounded over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Robust formation control for unicycle robots with directional sensor information Space-time video super-resolution using long-term temporal feature aggregation A novel collaborative decision-making method based on generalized abductive learning for resolving design conflicts Approach for improved development of advanced driver assistance systems for future smart mobility concepts Multi-agent reinforcement learning for autonomous vehicles: a survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1