{"title":"“银杏线性代数软件中用于高性能预处理的自适应精确块-雅可比”的重复计算结果(RCR)报告","authors":"S. Osborn","doi":"10.1145/3446000","DOIUrl":null,"url":null,"abstract":"The article by Flegar et al. titled “Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software” presents a novel, practical implementation of an adaptive precision block-Jacobi preconditioner. Performance results using state-of-the-art GPU architectures for the block-Jacobi preconditioner generation and application demonstrate the practical usability of the method, compared to a traditional full-precision block-Jacobi preconditioner. A production-ready implementation is provided in the Ginkgo numerical linear algebra library. In this report, the Ginkgo library is reinstalled and performance results are generated to perform a comparison to the original results when using Ginkgo’s Conjugate Gradient solver with either the full or the adaptive precision block-Jacobi preconditioner for a suite of test problems on an NVIDIA GPU accelerator. After completing this process, the published results are deemed reproducible.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"16 1","pages":"1 - 4"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Replicated Computational Results (RCR) Report for “Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software”\",\"authors\":\"S. Osborn\",\"doi\":\"10.1145/3446000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article by Flegar et al. titled “Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software” presents a novel, practical implementation of an adaptive precision block-Jacobi preconditioner. Performance results using state-of-the-art GPU architectures for the block-Jacobi preconditioner generation and application demonstrate the practical usability of the method, compared to a traditional full-precision block-Jacobi preconditioner. A production-ready implementation is provided in the Ginkgo numerical linear algebra library. In this report, the Ginkgo library is reinstalled and performance results are generated to perform a comparison to the original results when using Ginkgo’s Conjugate Gradient solver with either the full or the adaptive precision block-Jacobi preconditioner for a suite of test problems on an NVIDIA GPU accelerator. After completing this process, the published results are deemed reproducible.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"16 1\",\"pages\":\"1 - 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3446000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Replicated Computational Results (RCR) Report for “Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software”
The article by Flegar et al. titled “Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software” presents a novel, practical implementation of an adaptive precision block-Jacobi preconditioner. Performance results using state-of-the-art GPU architectures for the block-Jacobi preconditioner generation and application demonstrate the practical usability of the method, compared to a traditional full-precision block-Jacobi preconditioner. A production-ready implementation is provided in the Ginkgo numerical linear algebra library. In this report, the Ginkgo library is reinstalled and performance results are generated to perform a comparison to the original results when using Ginkgo’s Conjugate Gradient solver with either the full or the adaptive precision block-Jacobi preconditioner for a suite of test problems on an NVIDIA GPU accelerator. After completing this process, the published results are deemed reproducible.