{"title":"阿根廷潘帕斯草原农户决策与种植制度绩效的生态-社会综合模拟模型","authors":"S. Pessah, D. Ferraro, D. Blanco, R. Castro","doi":"10.18564/jasss.4772","DOIUrl":null,"url":null,"abstract":"Changes in agricultural systems are a multi-causal process involving climate change, globalization and technological change. These complex interactions regulate the landscape transformation process by imposing landuseandcover change (LUCC)dynamics. Inorder tobetterunderstandand forecast theLUCCprocess we developed a spatially explicit agent-based model in the form of a Cellular Automata: the AgroDEVS model. The model was designed to project viable LUCC dynamics along with their associated economic and environmental changes. AgroDEVS is structured with behavioral rules and functions representing a) crop yields, b) weather conditions, c) economic profits, d) farmer preferences, e) adoption of technology levels and f) natural resource consumption based on embodied energy accounting. Using data from a typical location of the Pampa region (Argentina) for the period 1988-2015, simulation exercises showed that economic goals were achieved, on average, each 6 out of 10 years, but environmental thresholds were only achieved in 1.9 out of 10 years. In a set of 50-years simulations, LUCC patterns converge quickly towards the most profitable crop sequences, with no noticeable trade-o between economic and environmental conditions.","PeriodicalId":14675,"journal":{"name":"J. Artif. Soc. Soc. Simul.","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Integrated Ecological-Social Simulation Model of Farmer Decisions and Cropping System Performance in the Rolling Pampas (Argentina)\",\"authors\":\"S. Pessah, D. Ferraro, D. Blanco, R. Castro\",\"doi\":\"10.18564/jasss.4772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changes in agricultural systems are a multi-causal process involving climate change, globalization and technological change. These complex interactions regulate the landscape transformation process by imposing landuseandcover change (LUCC)dynamics. Inorder tobetterunderstandand forecast theLUCCprocess we developed a spatially explicit agent-based model in the form of a Cellular Automata: the AgroDEVS model. The model was designed to project viable LUCC dynamics along with their associated economic and environmental changes. AgroDEVS is structured with behavioral rules and functions representing a) crop yields, b) weather conditions, c) economic profits, d) farmer preferences, e) adoption of technology levels and f) natural resource consumption based on embodied energy accounting. Using data from a typical location of the Pampa region (Argentina) for the period 1988-2015, simulation exercises showed that economic goals were achieved, on average, each 6 out of 10 years, but environmental thresholds were only achieved in 1.9 out of 10 years. In a set of 50-years simulations, LUCC patterns converge quickly towards the most profitable crop sequences, with no noticeable trade-o between economic and environmental conditions.\",\"PeriodicalId\":14675,\"journal\":{\"name\":\"J. Artif. Soc. Soc. Simul.\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Artif. Soc. Soc. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18564/jasss.4772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Artif. Soc. Soc. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18564/jasss.4772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Integrated Ecological-Social Simulation Model of Farmer Decisions and Cropping System Performance in the Rolling Pampas (Argentina)
Changes in agricultural systems are a multi-causal process involving climate change, globalization and technological change. These complex interactions regulate the landscape transformation process by imposing landuseandcover change (LUCC)dynamics. Inorder tobetterunderstandand forecast theLUCCprocess we developed a spatially explicit agent-based model in the form of a Cellular Automata: the AgroDEVS model. The model was designed to project viable LUCC dynamics along with their associated economic and environmental changes. AgroDEVS is structured with behavioral rules and functions representing a) crop yields, b) weather conditions, c) economic profits, d) farmer preferences, e) adoption of technology levels and f) natural resource consumption based on embodied energy accounting. Using data from a typical location of the Pampa region (Argentina) for the period 1988-2015, simulation exercises showed that economic goals were achieved, on average, each 6 out of 10 years, but environmental thresholds were only achieved in 1.9 out of 10 years. In a set of 50-years simulations, LUCC patterns converge quickly towards the most profitable crop sequences, with no noticeable trade-o between economic and environmental conditions.