一种用于PWARX混合模型识别的聚类新技术

Z. Lassoued, K. Abderrahim
{"title":"一种用于PWARX混合模型识别的聚类新技术","authors":"Z. Lassoued, K. Abderrahim","doi":"10.1109/ASCC.2013.6606095","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of clustering-based procedure for the identification of PWARX models. It consists in estimating both the parameter vector of each submodel and the coefficients of each partition. It exploits three main techniques which are clustering, linear identification and pattern recognition. The performance of this approach depends on the used clustering technique. However, most of existing methods are based on classical approaches which are sensible to poor initialization and suffer from the presence of outliers. To overcome these problems, we propose to exploit the Chiu's clustering technique. Simulation results are presented to illustrate the performance of the proposed method.","PeriodicalId":6304,"journal":{"name":"2013 9th Asian Control Conference (ASCC)","volume":"10 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A new clustering technique for the identification of PWARX hybrid models\",\"authors\":\"Z. Lassoued, K. Abderrahim\",\"doi\":\"10.1109/ASCC.2013.6606095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of clustering-based procedure for the identification of PWARX models. It consists in estimating both the parameter vector of each submodel and the coefficients of each partition. It exploits three main techniques which are clustering, linear identification and pattern recognition. The performance of this approach depends on the used clustering technique. However, most of existing methods are based on classical approaches which are sensible to poor initialization and suffer from the presence of outliers. To overcome these problems, we propose to exploit the Chiu's clustering technique. Simulation results are presented to illustrate the performance of the proposed method.\",\"PeriodicalId\":6304,\"journal\":{\"name\":\"2013 9th Asian Control Conference (ASCC)\",\"volume\":\"10 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th Asian Control Conference (ASCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASCC.2013.6606095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th Asian Control Conference (ASCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASCC.2013.6606095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文研究了基于聚类的PWARX模型识别问题。它包括估计每个子模型的参数向量和每个分区的系数。它利用了三种主要的技术:聚类、线性识别和模式识别。这种方法的性能取决于所使用的聚类技术。然而,现有的方法大多是基于经典方法,容易出现初始化差和异常值存在的问题。为了克服这些问题,我们提出利用Chiu的聚类技术。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new clustering technique for the identification of PWARX hybrid models
This paper addresses the problem of clustering-based procedure for the identification of PWARX models. It consists in estimating both the parameter vector of each submodel and the coefficients of each partition. It exploits three main techniques which are clustering, linear identification and pattern recognition. The performance of this approach depends on the used clustering technique. However, most of existing methods are based on classical approaches which are sensible to poor initialization and suffer from the presence of outliers. To overcome these problems, we propose to exploit the Chiu's clustering technique. Simulation results are presented to illustrate the performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable double resonant controller for fast image scanning of atomic force microscope FA system integration using robotic intelligent componets Parameter identification of bacterial growth bioprocesses using particle swarm optimization Velocity planning to optimize traction losses in a City-Bus Equipped with Permanent Magnet Three-Phase Synchronous Motors Stabilization of uncertain discrete time-delayed systems via delta operator approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1