Qi Gao, Gavin O. Jones, M. Sugawara, Takao Kobayashi, Hiroki Yamashita, Hideaki Kawaguchi, Shu Tanaka, Naoki Yamamoto
{"title":"氘化高效OLED发射体的量子经典计算分子设计","authors":"Qi Gao, Gavin O. Jones, M. Sugawara, Takao Kobayashi, Hiroki Yamashita, Hideaki Kawaguchi, Shu Tanaka, Naoki Yamamoto","doi":"10.34133/icomputing.0037","DOIUrl":null,"url":null,"abstract":"This study describes a hybrid quantum-classical computational approach for designing synthesizable deuterated $Alq_3$ emitters possessing desirable emission quantum efficiencies (QEs). This design process has been performed on the tris(8-hydroxyquinolinato) ligands typically bound to aluminum in $Alq_3$. It involves a multi-pronged approach which first utilizes classical quantum chemistry to predict the emission QEs of the $Alq_3$ ligands. These initial results were then used as a machine learning dataset for a factorization machine-based model which was applied to construct an Ising Hamiltonian to predict emission quantum efficiencies on a classical computer. We show that such a factorization machine-based approach can yield accurate property predictions for all 64 deuterated $Alq_3$ emitters with 13 training values. Moreover, another Ising Hamiltonian could be constructed by including synthetic constraints which could be used to perform optimizations on a quantum simulator and device using the variational quantum eigensolver (VQE) and quantum approximate optimization algorithm (QAOA) to discover a molecule possessing the optimal QE and synthetic cost. We observe that both VQE and QAOA calculations can predict the optimal molecule with greater than 0.95 probability on quantum simulators. These probabilities decrease to 0.83 and 0.075 for simulations with VQE and QAOA, respectively, on a quantum device, but these can be improved to 0.90 and 0.084 by mitigating readout error. Application of a binary search routine on quantum devices improves these results to a probability of 0.97 for simulations involving VQE and QAOA.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"20 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quantum-Classical Computational Molecular Design of Deuterated High-Efficiency OLED Emitters\",\"authors\":\"Qi Gao, Gavin O. Jones, M. Sugawara, Takao Kobayashi, Hiroki Yamashita, Hideaki Kawaguchi, Shu Tanaka, Naoki Yamamoto\",\"doi\":\"10.34133/icomputing.0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study describes a hybrid quantum-classical computational approach for designing synthesizable deuterated $Alq_3$ emitters possessing desirable emission quantum efficiencies (QEs). This design process has been performed on the tris(8-hydroxyquinolinato) ligands typically bound to aluminum in $Alq_3$. It involves a multi-pronged approach which first utilizes classical quantum chemistry to predict the emission QEs of the $Alq_3$ ligands. These initial results were then used as a machine learning dataset for a factorization machine-based model which was applied to construct an Ising Hamiltonian to predict emission quantum efficiencies on a classical computer. We show that such a factorization machine-based approach can yield accurate property predictions for all 64 deuterated $Alq_3$ emitters with 13 training values. Moreover, another Ising Hamiltonian could be constructed by including synthetic constraints which could be used to perform optimizations on a quantum simulator and device using the variational quantum eigensolver (VQE) and quantum approximate optimization algorithm (QAOA) to discover a molecule possessing the optimal QE and synthetic cost. We observe that both VQE and QAOA calculations can predict the optimal molecule with greater than 0.95 probability on quantum simulators. These probabilities decrease to 0.83 and 0.075 for simulations with VQE and QAOA, respectively, on a quantum device, but these can be improved to 0.90 and 0.084 by mitigating readout error. Application of a binary search routine on quantum devices improves these results to a probability of 0.97 for simulations involving VQE and QAOA.\",\"PeriodicalId\":45291,\"journal\":{\"name\":\"International Journal of Intelligent Computing and Cybernetics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Computing and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/icomputing.0037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/icomputing.0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Quantum-Classical Computational Molecular Design of Deuterated High-Efficiency OLED Emitters
This study describes a hybrid quantum-classical computational approach for designing synthesizable deuterated $Alq_3$ emitters possessing desirable emission quantum efficiencies (QEs). This design process has been performed on the tris(8-hydroxyquinolinato) ligands typically bound to aluminum in $Alq_3$. It involves a multi-pronged approach which first utilizes classical quantum chemistry to predict the emission QEs of the $Alq_3$ ligands. These initial results were then used as a machine learning dataset for a factorization machine-based model which was applied to construct an Ising Hamiltonian to predict emission quantum efficiencies on a classical computer. We show that such a factorization machine-based approach can yield accurate property predictions for all 64 deuterated $Alq_3$ emitters with 13 training values. Moreover, another Ising Hamiltonian could be constructed by including synthetic constraints which could be used to perform optimizations on a quantum simulator and device using the variational quantum eigensolver (VQE) and quantum approximate optimization algorithm (QAOA) to discover a molecule possessing the optimal QE and synthetic cost. We observe that both VQE and QAOA calculations can predict the optimal molecule with greater than 0.95 probability on quantum simulators. These probabilities decrease to 0.83 and 0.075 for simulations with VQE and QAOA, respectively, on a quantum device, but these can be improved to 0.90 and 0.084 by mitigating readout error. Application of a binary search routine on quantum devices improves these results to a probability of 0.97 for simulations involving VQE and QAOA.