固定化恶臭假单胞菌降解工业废水中苯酚的数学建模

G. Uba, H. Yakasai, Abdussamad Abubakar
{"title":"固定化恶臭假单胞菌降解工业废水中苯酚的数学建模","authors":"G. Uba, H. Yakasai, Abdussamad Abubakar","doi":"10.54987/jobimb.v8i1.503","DOIUrl":null,"url":null,"abstract":"Synthetic chemicals are extremely harmful, particularly those man-made ones. Models are used to describe the behavior of microorganisms under different physical or chemical conditions such as temperature, pH, and water activity. Phenol is one of the potentially hazardous synthetic industrial contaminants capable of causing deteriorating effects in humans. In this paper, for the first time we present different kinetics models such as Von Bertalanffy, Baranyi-Roberts, modified Schnute, modified Richards, modified Gompertz, modified Logistics and the most recent Huang were used to get values for the above kinetic constants or parameters from simultaneous biodegradation of phenol from industrial effluents using immobilized Pseudomonas putida. All the curves present the best models with highest adjusted R2 value with the lowest RMSE and AICc value. The Accuracy and Bias Factors values were close to unity (1.0). Nearly all of the models best fit the curves indicating that Pseudomonas putida growth on phenol can be described mathematically the modelling parameters obtained can be utilized for predicting bioremediation of phenols in batch culture and perhaps in the future will be valuable in modelling growth eon industrial effluent containing phenol.","PeriodicalId":15132,"journal":{"name":"Journal of Biochemistry, Microbiology and Biotechnology","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mathematical Modeling of The Biodegradation of Phenol from Industrial Effluents Using Immobilized Pseudomonas putida\",\"authors\":\"G. Uba, H. Yakasai, Abdussamad Abubakar\",\"doi\":\"10.54987/jobimb.v8i1.503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic chemicals are extremely harmful, particularly those man-made ones. Models are used to describe the behavior of microorganisms under different physical or chemical conditions such as temperature, pH, and water activity. Phenol is one of the potentially hazardous synthetic industrial contaminants capable of causing deteriorating effects in humans. In this paper, for the first time we present different kinetics models such as Von Bertalanffy, Baranyi-Roberts, modified Schnute, modified Richards, modified Gompertz, modified Logistics and the most recent Huang were used to get values for the above kinetic constants or parameters from simultaneous biodegradation of phenol from industrial effluents using immobilized Pseudomonas putida. All the curves present the best models with highest adjusted R2 value with the lowest RMSE and AICc value. The Accuracy and Bias Factors values were close to unity (1.0). Nearly all of the models best fit the curves indicating that Pseudomonas putida growth on phenol can be described mathematically the modelling parameters obtained can be utilized for predicting bioremediation of phenols in batch culture and perhaps in the future will be valuable in modelling growth eon industrial effluent containing phenol.\",\"PeriodicalId\":15132,\"journal\":{\"name\":\"Journal of Biochemistry, Microbiology and Biotechnology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemistry, Microbiology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54987/jobimb.v8i1.503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemistry, Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54987/jobimb.v8i1.503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

合成的化学物质是极其有害的,尤其是那些人造的。模型用于描述微生物在不同物理或化学条件下的行为,如温度、pH值和水活度。苯酚是一种潜在危险的合成工业污染物,能够对人体造成恶化的影响。本文首次采用Von Bertalanffy、Baranyi-Roberts、改良Schnute、改良Richards、改良Gompertz、改良Logistics和最新的Huang等动力学模型,对固定化恶臭假单胞菌同时生物降解工业废水中苯酚的动力学常数或参数进行了数值计算。调整后R2值最高、RMSE和AICc值最低的曲线表现出最好的模型。准确度和偏倚因子值接近统一(1.0)。几乎所有的模型都能很好地拟合曲线,表明恶臭假单胞菌在苯酚上的生长可以用数学方法描述,所获得的模型参数可用于预测间歇培养中苯酚的生物修复,并且将来可能在模拟含酚工业废水的生长方面具有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematical Modeling of The Biodegradation of Phenol from Industrial Effluents Using Immobilized Pseudomonas putida
Synthetic chemicals are extremely harmful, particularly those man-made ones. Models are used to describe the behavior of microorganisms under different physical or chemical conditions such as temperature, pH, and water activity. Phenol is one of the potentially hazardous synthetic industrial contaminants capable of causing deteriorating effects in humans. In this paper, for the first time we present different kinetics models such as Von Bertalanffy, Baranyi-Roberts, modified Schnute, modified Richards, modified Gompertz, modified Logistics and the most recent Huang were used to get values for the above kinetic constants or parameters from simultaneous biodegradation of phenol from industrial effluents using immobilized Pseudomonas putida. All the curves present the best models with highest adjusted R2 value with the lowest RMSE and AICc value. The Accuracy and Bias Factors values were close to unity (1.0). Nearly all of the models best fit the curves indicating that Pseudomonas putida growth on phenol can be described mathematically the modelling parameters obtained can be utilized for predicting bioremediation of phenols in batch culture and perhaps in the future will be valuable in modelling growth eon industrial effluent containing phenol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological and Physicochemical Evaluation of Palm Oil Mill Effluent Final Discharge from Negeri Sembilan, Malaysia Signalling Mechanism in TRPM2-dependent Copper- induced HT22 Cell Death Isolation, Characterization and Screening of Potential Lambda-Cyhalothrin-Degrading Bacteria from Cultivated Soil in Moro, Kwara State, Nigeria Prevalence of Helminth Parasites in Commercially Marketed Fruits and Vegetables in Selected Markets in Lokoja Metropolis, Kogi State, Nigeria Seasonal Patterns and Genetic Variability of Aedes Mosquitoes in Some Selected Communities of Maiduguri Metropolitan Council, Borno State, Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1