内模控制方案中采用人工神经网络控制直流电机

IF 1.2 Q3 ENGINEERING, MECHANICAL FME Transactions Pub Date : 2023-01-01 DOI:10.5937/fme2301109p
Natalija Perišić, Radisa Z. Jovanovic
{"title":"内模控制方案中采用人工神经网络控制直流电机","authors":"Natalija Perišić, Radisa Z. Jovanovic","doi":"10.5937/fme2301109p","DOIUrl":null,"url":null,"abstract":"In this research, control of the Direct Current motor is accomplished using a neuro controller in the Internal Model Control scheme. Two Feed Forward Neural Networks are trained using historical input-output data. The first neural network is trained to identify the object's dynamic behavior, and that model is used as an internal model in the control scheme. The second neural network is trained to obtain an inverse model of the object, which is applied as a neuro controller. Experiment is conducted on the real direct current motor in laboratory conditions. Obtained results are compared to those achieved by implementing the Direct Inverse Control method with the same neuro controller. It was demonstrated that the proposed control method is simple to implement and the system robustness is achieved, which is a great benefit, aside from the fact that no mathematical model of the system is necessary to synthesize the controller of the real object.","PeriodicalId":12218,"journal":{"name":"FME Transactions","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of direct current motor by using artificial neural networks in Internal model control scheme\",\"authors\":\"Natalija Perišić, Radisa Z. Jovanovic\",\"doi\":\"10.5937/fme2301109p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, control of the Direct Current motor is accomplished using a neuro controller in the Internal Model Control scheme. Two Feed Forward Neural Networks are trained using historical input-output data. The first neural network is trained to identify the object's dynamic behavior, and that model is used as an internal model in the control scheme. The second neural network is trained to obtain an inverse model of the object, which is applied as a neuro controller. Experiment is conducted on the real direct current motor in laboratory conditions. Obtained results are compared to those achieved by implementing the Direct Inverse Control method with the same neuro controller. It was demonstrated that the proposed control method is simple to implement and the system robustness is achieved, which is a great benefit, aside from the fact that no mathematical model of the system is necessary to synthesize the controller of the real object.\",\"PeriodicalId\":12218,\"journal\":{\"name\":\"FME Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FME Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/fme2301109p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FME Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/fme2301109p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,使用内模控制方案中的神经控制器来完成直流电机的控制。使用历史输入输出数据训练两个前馈神经网络。第一个神经网络被训练来识别目标的动态行为,该模型被用作控制方案中的内部模型。对第二个神经网络进行训练,得到目标的逆模型,作为神经控制器。在实验室条件下对实际直流电机进行了实验。将所得到的结果与采用相同神经控制器的直接逆控制方法所得到的结果进行了比较。结果表明,该控制方法实现简单,实现了系统的鲁棒性,而且不需要建立系统的数学模型来综合实际对象的控制器,这是一个很大的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control of direct current motor by using artificial neural networks in Internal model control scheme
In this research, control of the Direct Current motor is accomplished using a neuro controller in the Internal Model Control scheme. Two Feed Forward Neural Networks are trained using historical input-output data. The first neural network is trained to identify the object's dynamic behavior, and that model is used as an internal model in the control scheme. The second neural network is trained to obtain an inverse model of the object, which is applied as a neuro controller. Experiment is conducted on the real direct current motor in laboratory conditions. Obtained results are compared to those achieved by implementing the Direct Inverse Control method with the same neuro controller. It was demonstrated that the proposed control method is simple to implement and the system robustness is achieved, which is a great benefit, aside from the fact that no mathematical model of the system is necessary to synthesize the controller of the real object.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FME Transactions
FME Transactions ENGINEERING, MECHANICAL-
CiteScore
3.60
自引率
31.20%
发文量
24
审稿时长
12 weeks
期刊最新文献
Impact shock events in multimodal container transshipment for packaging testing Design a low-cost delta robot arm for pick and place applications based on computer vision Static behaviour of functionally graded rotating cantilever beams using B-spline collocation technique Control of direct current motor by using artificial neural networks in Internal model control scheme Robust algorithm to learn rules for classification: A fault diagnosis case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1