{"title":"开放Web架构在协同海事设计与仿真中的应用","authors":"Felipe F. de Oliveira, Í. A. Fonseca, H. Gaspar","doi":"10.1115/omae2022-81505","DOIUrl":null,"url":null,"abstract":"\n This work investigates the use of open architectures to support the development of flexible and scalable maritime design web applications, giving stakeholders shared access to data. It turns to the popular full-stack MERN architecture (MongoDB, Node.js, Express, and React), which is is modular and mostly open source. A prototype web application providing features for ship design and operation was developed. The app stores a ship model which can be linked to different analyses and simulations. During design, users might opt to visualize the model of the ship with a spatial view; during operation, they can resort to a detailed visualization displaying the vessel as built. Three examples are provided to illustrate the potential of these features. First, a dashboard displaying results for hydrostatics, stability, resistance, and motion response. The second use case hypothesizes a vessel is set to undergo a jumboization procedure and compares the analyses results for the vessel after elongation with the current ones. The third exemplifies how a preliminary maneuvering model can be confronted with results from a sea trial by linking the app to operational data, a step towards digital-twin concepts. The discussion addresses the potential of the approach and challenges that need to be considered before extending it to an application that can be used outside the academia.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying Open Web Architectures Towards Collaborative Maritime Design and Simulation\",\"authors\":\"Felipe F. de Oliveira, Í. A. Fonseca, H. Gaspar\",\"doi\":\"10.1115/omae2022-81505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work investigates the use of open architectures to support the development of flexible and scalable maritime design web applications, giving stakeholders shared access to data. It turns to the popular full-stack MERN architecture (MongoDB, Node.js, Express, and React), which is is modular and mostly open source. A prototype web application providing features for ship design and operation was developed. The app stores a ship model which can be linked to different analyses and simulations. During design, users might opt to visualize the model of the ship with a spatial view; during operation, they can resort to a detailed visualization displaying the vessel as built. Three examples are provided to illustrate the potential of these features. First, a dashboard displaying results for hydrostatics, stability, resistance, and motion response. The second use case hypothesizes a vessel is set to undergo a jumboization procedure and compares the analyses results for the vessel after elongation with the current ones. The third exemplifies how a preliminary maneuvering model can be confronted with results from a sea trial by linking the app to operational data, a step towards digital-twin concepts. The discussion addresses the potential of the approach and challenges that need to be considered before extending it to an application that can be used outside the academia.\",\"PeriodicalId\":23502,\"journal\":{\"name\":\"Volume 1: Offshore Technology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Offshore Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2022-81505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2022-81505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applying Open Web Architectures Towards Collaborative Maritime Design and Simulation
This work investigates the use of open architectures to support the development of flexible and scalable maritime design web applications, giving stakeholders shared access to data. It turns to the popular full-stack MERN architecture (MongoDB, Node.js, Express, and React), which is is modular and mostly open source. A prototype web application providing features for ship design and operation was developed. The app stores a ship model which can be linked to different analyses and simulations. During design, users might opt to visualize the model of the ship with a spatial view; during operation, they can resort to a detailed visualization displaying the vessel as built. Three examples are provided to illustrate the potential of these features. First, a dashboard displaying results for hydrostatics, stability, resistance, and motion response. The second use case hypothesizes a vessel is set to undergo a jumboization procedure and compares the analyses results for the vessel after elongation with the current ones. The third exemplifies how a preliminary maneuvering model can be confronted with results from a sea trial by linking the app to operational data, a step towards digital-twin concepts. The discussion addresses the potential of the approach and challenges that need to be considered before extending it to an application that can be used outside the academia.