G. Veronis, Yin Huang, Yuecheng Shen, Vahid Foroughi Nezhad, Chenglong You
{"title":"磁光隔离和等离子体结构奇异点的拓扑边缘态","authors":"G. Veronis, Yin Huang, Yuecheng Shen, Vahid Foroughi Nezhad, Chenglong You","doi":"10.1117/12.2633235","DOIUrl":null,"url":null,"abstract":"We introduce a nanoplasmonic isolator consisting of a cavity coupled to a metal-dielectric-metal (MDM) waveguide. The waveguide and cavity are filled with a magneto-optical (MO) material, and the structure is under a static magnetic field. We show that, when MO activity is present, the cavity becomes a traveling wave resonator with unequal decay rates into the forward and backward directions. As a result, the structure operates as an isolator. We also introduce non-Hermitian plasmonic waveguide-cavity systems with topological edge states (TESs) at singular points. The structure unit cells consist of an MDM waveguide side-coupled to MDM stub resonators with modulated distances between adjacent stubs. In such structures the modulated distances introduce an effective gauge magnetic field. We show that such structures achieve extremely high sensitivity of the reflected light intensity. TESs at singular points could lead to singularity-based plasmonic devices with enhanced performance.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"23 1","pages":"121960C - 121960C-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magneto-optical isolation and topological edge states at singular points in plasmonic structures\",\"authors\":\"G. Veronis, Yin Huang, Yuecheng Shen, Vahid Foroughi Nezhad, Chenglong You\",\"doi\":\"10.1117/12.2633235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a nanoplasmonic isolator consisting of a cavity coupled to a metal-dielectric-metal (MDM) waveguide. The waveguide and cavity are filled with a magneto-optical (MO) material, and the structure is under a static magnetic field. We show that, when MO activity is present, the cavity becomes a traveling wave resonator with unequal decay rates into the forward and backward directions. As a result, the structure operates as an isolator. We also introduce non-Hermitian plasmonic waveguide-cavity systems with topological edge states (TESs) at singular points. The structure unit cells consist of an MDM waveguide side-coupled to MDM stub resonators with modulated distances between adjacent stubs. In such structures the modulated distances introduce an effective gauge magnetic field. We show that such structures achieve extremely high sensitivity of the reflected light intensity. TESs at singular points could lead to singularity-based plasmonic devices with enhanced performance.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"23 1\",\"pages\":\"121960C - 121960C-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2633235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2633235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magneto-optical isolation and topological edge states at singular points in plasmonic structures
We introduce a nanoplasmonic isolator consisting of a cavity coupled to a metal-dielectric-metal (MDM) waveguide. The waveguide and cavity are filled with a magneto-optical (MO) material, and the structure is under a static magnetic field. We show that, when MO activity is present, the cavity becomes a traveling wave resonator with unequal decay rates into the forward and backward directions. As a result, the structure operates as an isolator. We also introduce non-Hermitian plasmonic waveguide-cavity systems with topological edge states (TESs) at singular points. The structure unit cells consist of an MDM waveguide side-coupled to MDM stub resonators with modulated distances between adjacent stubs. In such structures the modulated distances introduce an effective gauge magnetic field. We show that such structures achieve extremely high sensitivity of the reflected light intensity. TESs at singular points could lead to singularity-based plasmonic devices with enhanced performance.