Sign-Magnitude SC:在深度神经网络随机计算中获得10倍的精度*

Aidyn Zhakatayev, Sugil Lee, H. Sim, Jongeun Lee
{"title":"Sign-Magnitude SC:在深度神经网络随机计算中获得10倍的精度*","authors":"Aidyn Zhakatayev, Sugil Lee, H. Sim, Jongeun Lee","doi":"10.1145/3195970.3196113","DOIUrl":null,"url":null,"abstract":"Stochastic computing (SC) is a promising computing paradigm for applications with low precision requirement, stringent cost and power restriction. One known problem with SC, however, is the low accuracy especially with multiplication. In this paper we propose a simple, yet very effective solution to the low-accuracy SC-multiplication problem, which is critical in many applications such as deep neural networks (DNNs). Our solution is based on an old concept of sign-magnitude, which, when applied to SC, has unique advantages. Our experimental results using multiple DNN applications demonstrate that our technique can improve the efficiency of SC-based DNNs by about 32X in terms of latency over using bipolar SC, with very little area overhead (about 1%).","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"68 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks*\",\"authors\":\"Aidyn Zhakatayev, Sugil Lee, H. Sim, Jongeun Lee\",\"doi\":\"10.1145/3195970.3196113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic computing (SC) is a promising computing paradigm for applications with low precision requirement, stringent cost and power restriction. One known problem with SC, however, is the low accuracy especially with multiplication. In this paper we propose a simple, yet very effective solution to the low-accuracy SC-multiplication problem, which is critical in many applications such as deep neural networks (DNNs). Our solution is based on an old concept of sign-magnitude, which, when applied to SC, has unique advantages. Our experimental results using multiple DNN applications demonstrate that our technique can improve the efficiency of SC-based DNNs by about 32X in terms of latency over using bipolar SC, with very little area overhead (about 1%).\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"68 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3195970.3196113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

对于精度要求低、成本和功耗限制严格的应用,随机计算是一种很有前途的计算范式。然而,SC的一个已知问题是精度低,尤其是乘法。在本文中,我们提出了一个简单但非常有效的解决低精度sc乘法问题的方法,这在许多应用中是至关重要的,如深度神经网络(dnn)。我们的解决方案基于一个古老的符号幅度概念,当应用于SC时,它具有独特的优势。我们使用多个DNN应用的实验结果表明,我们的技术可以将基于SC的DNN的效率提高约32倍,就延迟而言,使用双极SC,并且面积开销很小(约1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks*
Stochastic computing (SC) is a promising computing paradigm for applications with low precision requirement, stringent cost and power restriction. One known problem with SC, however, is the low accuracy especially with multiplication. In this paper we propose a simple, yet very effective solution to the low-accuracy SC-multiplication problem, which is critical in many applications such as deep neural networks (DNNs). Our solution is based on an old concept of sign-magnitude, which, when applied to SC, has unique advantages. Our experimental results using multiple DNN applications demonstrate that our technique can improve the efficiency of SC-based DNNs by about 32X in terms of latency over using bipolar SC, with very little area overhead (about 1%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft-FET: Phase transition material assisted Soft switching F ield E ffect T ransistor for supply voltage droop mitigation Modelling Multicore Contention on the AURIX™ TC27x Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks* Generalized Augmented Lagrangian and Its Applications to VLSI Global Placement* Side-channel security of superscalar CPUs : Evaluating the Impact of Micro-architectural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1