{"title":"紧凑型自旋传递扭矩非易失性触发器设计的电源门结构","authors":"Karim Ali, Fei Li, S. Lua, C. Heng","doi":"10.1109/APCCAS.2016.7803911","DOIUrl":null,"url":null,"abstract":"This paper proposes a compact spin transfer torque non-volatile flip-flop (STT-NVFF) design. The proposed NVFF adds four transistors and two complementary magnetic tunnel junctions (MTJs) over a standard volatile flip-flop with only 18% area overhead. The NVFF utilizes a low power/ fast switching MTJ that permits the elimination of the write circuitry existing in conventional STT-NVFFs. The proposed NVFF is at least 80% smaller area than conventional STT-NVFFs that uses write circuitry with, at least, the same energy efficiency. It achieves a low backup energy of 111 fJ and restore energy of 6.9 fJ within 3 ns and 0.16 ns respectively. Moreover, it realizes a 72% reduction in break-even point (BEP) and a 10% area reduction compared to an STT-NVFF employing the latch as a writer.","PeriodicalId":6495,"journal":{"name":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"67 1","pages":"119-122"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Compact spin transfer torque non-volatile flip flop design for power-gating architecture\",\"authors\":\"Karim Ali, Fei Li, S. Lua, C. Heng\",\"doi\":\"10.1109/APCCAS.2016.7803911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a compact spin transfer torque non-volatile flip-flop (STT-NVFF) design. The proposed NVFF adds four transistors and two complementary magnetic tunnel junctions (MTJs) over a standard volatile flip-flop with only 18% area overhead. The NVFF utilizes a low power/ fast switching MTJ that permits the elimination of the write circuitry existing in conventional STT-NVFFs. The proposed NVFF is at least 80% smaller area than conventional STT-NVFFs that uses write circuitry with, at least, the same energy efficiency. It achieves a low backup energy of 111 fJ and restore energy of 6.9 fJ within 3 ns and 0.16 ns respectively. Moreover, it realizes a 72% reduction in break-even point (BEP) and a 10% area reduction compared to an STT-NVFF employing the latch as a writer.\",\"PeriodicalId\":6495,\"journal\":{\"name\":\"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"67 1\",\"pages\":\"119-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.2016.7803911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2016.7803911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact spin transfer torque non-volatile flip flop design for power-gating architecture
This paper proposes a compact spin transfer torque non-volatile flip-flop (STT-NVFF) design. The proposed NVFF adds four transistors and two complementary magnetic tunnel junctions (MTJs) over a standard volatile flip-flop with only 18% area overhead. The NVFF utilizes a low power/ fast switching MTJ that permits the elimination of the write circuitry existing in conventional STT-NVFFs. The proposed NVFF is at least 80% smaller area than conventional STT-NVFFs that uses write circuitry with, at least, the same energy efficiency. It achieves a low backup energy of 111 fJ and restore energy of 6.9 fJ within 3 ns and 0.16 ns respectively. Moreover, it realizes a 72% reduction in break-even point (BEP) and a 10% area reduction compared to an STT-NVFF employing the latch as a writer.