Kenichiro Tanaka, Y. Mukaigawa, Hiroyuki Kubo, Y. Matsushita, Y. Yagi
{"title":"从飞行时间失真中恢复透明形状","authors":"Kenichiro Tanaka, Y. Mukaigawa, Hiroyuki Kubo, Y. Matsushita, Y. Yagi","doi":"10.1109/CVPR.2016.475","DOIUrl":null,"url":null,"abstract":"This paper presents a method for recovering shape and normal of a transparent object from a single viewpoint using a Time-of-Flight (ToF) camera. Our method is built upon the fact that the speed of light varies with the refractive index of the medium and therefore the depth measurement of a transparent object with a ToF camera may be distorted. We show that, from this ToF distortion, the refractive light path can be uniquely determined by estimating a single parameter. We estimate this parameter by introducing a surface normal consistency between the one determined by a light path candidate and the other computed from the corresponding shape. The proposed method is evaluated by both simulation and real-world experiments and shows faithful transparent shape recovery.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"25 1","pages":"4387-4395"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Recovering Transparent Shape from Time-of-Flight Distortion\",\"authors\":\"Kenichiro Tanaka, Y. Mukaigawa, Hiroyuki Kubo, Y. Matsushita, Y. Yagi\",\"doi\":\"10.1109/CVPR.2016.475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for recovering shape and normal of a transparent object from a single viewpoint using a Time-of-Flight (ToF) camera. Our method is built upon the fact that the speed of light varies with the refractive index of the medium and therefore the depth measurement of a transparent object with a ToF camera may be distorted. We show that, from this ToF distortion, the refractive light path can be uniquely determined by estimating a single parameter. We estimate this parameter by introducing a surface normal consistency between the one determined by a light path candidate and the other computed from the corresponding shape. The proposed method is evaluated by both simulation and real-world experiments and shows faithful transparent shape recovery.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"25 1\",\"pages\":\"4387-4395\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recovering Transparent Shape from Time-of-Flight Distortion
This paper presents a method for recovering shape and normal of a transparent object from a single viewpoint using a Time-of-Flight (ToF) camera. Our method is built upon the fact that the speed of light varies with the refractive index of the medium and therefore the depth measurement of a transparent object with a ToF camera may be distorted. We show that, from this ToF distortion, the refractive light path can be uniquely determined by estimating a single parameter. We estimate this parameter by introducing a surface normal consistency between the one determined by a light path candidate and the other computed from the corresponding shape. The proposed method is evaluated by both simulation and real-world experiments and shows faithful transparent shape recovery.