最小化不相关并行机上作业总加权延迟的启发式算法

L. Mönch
{"title":"最小化不相关并行机上作业总加权延迟的启发式算法","authors":"L. Mönch","doi":"10.1109/COASE.2008.4626531","DOIUrl":null,"url":null,"abstract":"In this paper, we present an efficient method to solve unrelated parallel machine total weighted tardiness (TWT) scheduling problems. We apply an ant colony optimization (ACO) approach as a heuristic to solve this NP-hard problem. A colony of artificial ants is used to construct iteratively solutions of the scheduling problem using artificial pheromone trails and heuristic information. For the computation of the heuristic information, we use the apparent tardiness cost (ATC) dispatching rule. We additionally improve the TWT value by applying a decomposition heuristic that solves a sequence of smaller scheduling problems optimally. We report on computational experiments based on stochastically generated test instances. Problems of this type arise in semiconductor manufacturing and have great practical relevance.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"7 1","pages":"572-577"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Heuristics to minimize total weighted tardiness of jobs on unrelated parallel machines\",\"authors\":\"L. Mönch\",\"doi\":\"10.1109/COASE.2008.4626531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an efficient method to solve unrelated parallel machine total weighted tardiness (TWT) scheduling problems. We apply an ant colony optimization (ACO) approach as a heuristic to solve this NP-hard problem. A colony of artificial ants is used to construct iteratively solutions of the scheduling problem using artificial pheromone trails and heuristic information. For the computation of the heuristic information, we use the apparent tardiness cost (ATC) dispatching rule. We additionally improve the TWT value by applying a decomposition heuristic that solves a sequence of smaller scheduling problems optimally. We report on computational experiments based on stochastically generated test instances. Problems of this type arise in semiconductor manufacturing and have great practical relevance.\",\"PeriodicalId\":80307,\"journal\":{\"name\":\"The Case manager\",\"volume\":\"7 1\",\"pages\":\"572-577\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Case manager\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2008.4626531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2008.4626531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种求解不相关并行机总加权延迟调度问题的有效方法。我们采用蚁群优化(ACO)方法作为启发式方法来解决这个np困难问题。利用人工信息素轨迹和启发式信息,利用人工蚁群构造调度问题的迭代解。对于启发式信息的计算,我们使用表观延迟代价(ATC)调度规则。我们还通过应用分解启发式算法来优化解决一系列较小的调度问题,从而提高TWT值。我们报告了基于随机生成的测试实例的计算实验。这种类型的问题出现在半导体制造中,具有很大的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heuristics to minimize total weighted tardiness of jobs on unrelated parallel machines
In this paper, we present an efficient method to solve unrelated parallel machine total weighted tardiness (TWT) scheduling problems. We apply an ant colony optimization (ACO) approach as a heuristic to solve this NP-hard problem. A colony of artificial ants is used to construct iteratively solutions of the scheduling problem using artificial pheromone trails and heuristic information. For the computation of the heuristic information, we use the apparent tardiness cost (ATC) dispatching rule. We additionally improve the TWT value by applying a decomposition heuristic that solves a sequence of smaller scheduling problems optimally. We report on computational experiments based on stochastically generated test instances. Problems of this type arise in semiconductor manufacturing and have great practical relevance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drivers and scorecards to improve hypertension control in primary care practice: Recommendations from the HEARTS in the Americas Innovation Group. NLP4ITF @ Causal News Corpus 2022: Leveraging Linguistic Information for Event Causality Classification SPOCK @ Causal News Corpus 2022: Cause-Effect-Signal Span Detection Using Span-Based and Sequence Tagging Models CEIA-NLP at CASE 2022 Task 1: Protest News Detection for Portuguese Point cloud extraction of aircraft skin butt joint based on adaptive matching calibration algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1