Ning Jia, Zhilong Peng, Yin Yao, P. Wei, Shaohua Chen
{"title":"平面P波作用下球形纳米空腔周围的动应力集中系数","authors":"Ning Jia, Zhilong Peng, Yin Yao, P. Wei, Shaohua Chen","doi":"10.1115/1.4054053","DOIUrl":null,"url":null,"abstract":"\n Scattering of an elastic wave by cavities yields dynamic stress concentration around the cavities. When the characteristic size of the cavities shrinks to the nanometer scale, the surface effect becomes prominent. Based on a recently proposed theory of surface elastodynamics, the dynamic stress concentration factor (DSCF) in the scattering of a plane P wave by a spherical nanocavity has been investigated. Not only the surface energy effect but also the surface inertial effect is considered. The former depends on two easily-determined surface material parameters, namely, the bulk surface energy density and the surface relaxation parameter, whereas the latter is related to the surface mass density. Interestingly, due to the surface relaxation of nanocavity, a constant elastic field exists in the elastic medium even without any dynamic loadings. Furthermore, it is found that when the radius of cavity is at the nanoscale, the surface energy effect as well as the surface inertial effect has a significant influence on DSCF. The former attenuates the maximum DSCF, whereas the latter enhances it. With the increasing incident P wave frequency, the dominant role transits from the surface energy effect to the surface inertial effect. This indicates that the DSCF around the nanocavity can be properly tuned by adjusting the incident wave frequency, the cavity radius and the surface material parameters. The results can not only enable a deeper understanding of the surface effects on DSCF around the nanocavities, but also provide a guide for designing nanoporous materials exhibiting efficient dynamic performance.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"25 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic stress concentration factor around a spherical nanocavity under a plane P wave\",\"authors\":\"Ning Jia, Zhilong Peng, Yin Yao, P. Wei, Shaohua Chen\",\"doi\":\"10.1115/1.4054053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Scattering of an elastic wave by cavities yields dynamic stress concentration around the cavities. When the characteristic size of the cavities shrinks to the nanometer scale, the surface effect becomes prominent. Based on a recently proposed theory of surface elastodynamics, the dynamic stress concentration factor (DSCF) in the scattering of a plane P wave by a spherical nanocavity has been investigated. Not only the surface energy effect but also the surface inertial effect is considered. The former depends on two easily-determined surface material parameters, namely, the bulk surface energy density and the surface relaxation parameter, whereas the latter is related to the surface mass density. Interestingly, due to the surface relaxation of nanocavity, a constant elastic field exists in the elastic medium even without any dynamic loadings. Furthermore, it is found that when the radius of cavity is at the nanoscale, the surface energy effect as well as the surface inertial effect has a significant influence on DSCF. The former attenuates the maximum DSCF, whereas the latter enhances it. With the increasing incident P wave frequency, the dominant role transits from the surface energy effect to the surface inertial effect. This indicates that the DSCF around the nanocavity can be properly tuned by adjusting the incident wave frequency, the cavity radius and the surface material parameters. The results can not only enable a deeper understanding of the surface effects on DSCF around the nanocavities, but also provide a guide for designing nanoporous materials exhibiting efficient dynamic performance.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054053\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054053","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Dynamic stress concentration factor around a spherical nanocavity under a plane P wave
Scattering of an elastic wave by cavities yields dynamic stress concentration around the cavities. When the characteristic size of the cavities shrinks to the nanometer scale, the surface effect becomes prominent. Based on a recently proposed theory of surface elastodynamics, the dynamic stress concentration factor (DSCF) in the scattering of a plane P wave by a spherical nanocavity has been investigated. Not only the surface energy effect but also the surface inertial effect is considered. The former depends on two easily-determined surface material parameters, namely, the bulk surface energy density and the surface relaxation parameter, whereas the latter is related to the surface mass density. Interestingly, due to the surface relaxation of nanocavity, a constant elastic field exists in the elastic medium even without any dynamic loadings. Furthermore, it is found that when the radius of cavity is at the nanoscale, the surface energy effect as well as the surface inertial effect has a significant influence on DSCF. The former attenuates the maximum DSCF, whereas the latter enhances it. With the increasing incident P wave frequency, the dominant role transits from the surface energy effect to the surface inertial effect. This indicates that the DSCF around the nanocavity can be properly tuned by adjusting the incident wave frequency, the cavity radius and the surface material parameters. The results can not only enable a deeper understanding of the surface effects on DSCF around the nanocavities, but also provide a guide for designing nanoporous materials exhibiting efficient dynamic performance.
期刊介绍:
The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences.
Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.