高速连续油管光纤系统在含酸气生产井连续油管修井作业中的应用

Mustafa R. Al-Zaid, Aslan Bulekbay, Abdulaziz Al-Harbi, S. M. Al-Driweesh
{"title":"高速连续油管光纤系统在含酸气生产井连续油管修井作业中的应用","authors":"Mustafa R. Al-Zaid, Aslan Bulekbay, Abdulaziz Al-Harbi, S. M. Al-Driweesh","doi":"10.2118/194724-MS","DOIUrl":null,"url":null,"abstract":"\n Dealing with tight high pressure/high temperature (HPHT) sour gas reservoirs encounters many challenges. One challenge associated with these reservoirs is the development of hard and heavy scale mixture in the production tubing, causing flow and accessibility restrictions. To restore full accessibility, a mechanical de-scaling operations using special milling and cleanout assemblies is the best current solution to this problem, due to the fact that chemical dissolving methods do not deliver the desired results. Another challenge is conventional perforation in some tight wells gives limited penetration, which does not establish the required wellbore reservoir communication. In this case, utilizing the abrasive jetting tool will offer the best solution to overcome the casing string, cement, formation damage achieve optimum penetration which will optimize the stimulation design and enhance the well productivity.\n In recent years, using coiled tubing (CT) equipped with fiber optics with aforementioned coil tubing intervention operations, have become a common practice in gas wells. Using this system provides the ability to acquire on-job real time data such as pressure, temperature and gamma ray depth correlation. Furthermore, the incorporation of a new rugged fiber optics system into the intervention strategy has enabled increasing operational success rate and results in robust control on the operation parameters, minimizing the risk of gas influx, reducing coil tubing runs and improving decision making process during the operations.\n This paper describes the challenges in mechanical de-scaling and slot cuttings operations, overview of different applications using CT with fiber optics system, provides a comparison between the rugged and standard fiber optics systems and lessons learned of recent implementation of the rugged CT fiber optic system.","PeriodicalId":11031,"journal":{"name":"Day 4 Thu, March 21, 2019","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of Applying High Rate Coiled Tubing with Fiber Optic System to Meet the Growing Challenges of Coiled Tubing Interventions in Sour Gas Producer Wells\",\"authors\":\"Mustafa R. Al-Zaid, Aslan Bulekbay, Abdulaziz Al-Harbi, S. M. Al-Driweesh\",\"doi\":\"10.2118/194724-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Dealing with tight high pressure/high temperature (HPHT) sour gas reservoirs encounters many challenges. One challenge associated with these reservoirs is the development of hard and heavy scale mixture in the production tubing, causing flow and accessibility restrictions. To restore full accessibility, a mechanical de-scaling operations using special milling and cleanout assemblies is the best current solution to this problem, due to the fact that chemical dissolving methods do not deliver the desired results. Another challenge is conventional perforation in some tight wells gives limited penetration, which does not establish the required wellbore reservoir communication. In this case, utilizing the abrasive jetting tool will offer the best solution to overcome the casing string, cement, formation damage achieve optimum penetration which will optimize the stimulation design and enhance the well productivity.\\n In recent years, using coiled tubing (CT) equipped with fiber optics with aforementioned coil tubing intervention operations, have become a common practice in gas wells. Using this system provides the ability to acquire on-job real time data such as pressure, temperature and gamma ray depth correlation. Furthermore, the incorporation of a new rugged fiber optics system into the intervention strategy has enabled increasing operational success rate and results in robust control on the operation parameters, minimizing the risk of gas influx, reducing coil tubing runs and improving decision making process during the operations.\\n This paper describes the challenges in mechanical de-scaling and slot cuttings operations, overview of different applications using CT with fiber optics system, provides a comparison between the rugged and standard fiber optics systems and lessons learned of recent implementation of the rugged CT fiber optic system.\",\"PeriodicalId\":11031,\"journal\":{\"name\":\"Day 4 Thu, March 21, 2019\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, March 21, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/194724-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, March 21, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194724-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

处理致密高压高温(HPHT)含酸气藏面临许多挑战。与这些油藏相关的一个挑战是生产油管中形成坚硬且重垢的混合物,导致流动和可达性受限。为了完全恢复可达性,使用特殊磨铣和清洗组件的机械除垢作业是目前解决该问题的最佳方案,因为化学溶解方法无法达到预期的效果。另一个挑战是,在一些致密井中,常规射孔的穿透能力有限,无法建立所需的井筒与油藏连通。在这种情况下,使用磨料喷射工具将提供最佳解决方案,以克服套管柱、水泥、地层损害,实现最佳穿透,从而优化增产设计,提高油井产能。近年来,在上述连续油管修井作业中,使用配备光纤的连续油管(CT)已成为气井中常见的做法。使用该系统可以实时获取作业数据,如压力、温度和伽马射线深度相关性。此外,在修井作业策略中集成了新型坚固的光纤系统,提高了作业成功率,实现了对作业参数的稳健控制,最大限度地降低了气体流入的风险,减少了盘管的下入次数,改善了作业过程中的决策过程。本文介绍了机械去垢和槽切割作业中的挑战,概述了CT与光纤系统的不同应用,比较了坚固型和标准型光纤系统,以及最近实施坚固型CT光纤系统的经验教训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applications of Applying High Rate Coiled Tubing with Fiber Optic System to Meet the Growing Challenges of Coiled Tubing Interventions in Sour Gas Producer Wells
Dealing with tight high pressure/high temperature (HPHT) sour gas reservoirs encounters many challenges. One challenge associated with these reservoirs is the development of hard and heavy scale mixture in the production tubing, causing flow and accessibility restrictions. To restore full accessibility, a mechanical de-scaling operations using special milling and cleanout assemblies is the best current solution to this problem, due to the fact that chemical dissolving methods do not deliver the desired results. Another challenge is conventional perforation in some tight wells gives limited penetration, which does not establish the required wellbore reservoir communication. In this case, utilizing the abrasive jetting tool will offer the best solution to overcome the casing string, cement, formation damage achieve optimum penetration which will optimize the stimulation design and enhance the well productivity. In recent years, using coiled tubing (CT) equipped with fiber optics with aforementioned coil tubing intervention operations, have become a common practice in gas wells. Using this system provides the ability to acquire on-job real time data such as pressure, temperature and gamma ray depth correlation. Furthermore, the incorporation of a new rugged fiber optics system into the intervention strategy has enabled increasing operational success rate and results in robust control on the operation parameters, minimizing the risk of gas influx, reducing coil tubing runs and improving decision making process during the operations. This paper describes the challenges in mechanical de-scaling and slot cuttings operations, overview of different applications using CT with fiber optics system, provides a comparison between the rugged and standard fiber optics systems and lessons learned of recent implementation of the rugged CT fiber optic system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Size distribution analysis of microstickies treated by enzyme mixtures in papermaking whitewater Evaluating hardness and the S-test Controllable anisotropic properties of wet-laid hydroentangled nonwovens A study of the softness of household tissues using a tissue softness analyzer and hand-felt panels A REVIEW OF MULTI HOMING AND ITS ASSOCIATED RESEARCH AREAS ALONG WITH INTERNET OF THINGS (IOT)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1