眼动追踪在机器学习辅助下进行交互式地理视觉探索的潜力

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Cartography Pub Date : 2023-01-10 DOI:10.1080/23729333.2022.2150379
M. Keskin, P. Kettunen
{"title":"眼动追踪在机器学习辅助下进行交互式地理视觉探索的潜力","authors":"M. Keskin, P. Kettunen","doi":"10.1080/23729333.2022.2150379","DOIUrl":null,"url":null,"abstract":"ABSTRACT This review article collects knowledge on the use of eye-tracking and machine learning methods for application in automated and interactive geovisualization systems. Our focus is on exploratory reading of geovisualizations (abbr. geoexploration) and on machine learning tools for exploring vector geospatial data. We particularly consider geospatial data that is unlabeled, confusing or unknown to the user. The contribution of the article is in (i) defining principles and requirements for enabling user interaction with the geovisualizations that learn from and adapt to user behavior, and (ii) reviewing the use of eye tracking and machine learning to design gaze-aware interactive map systems (GAIMS). In this context, we review literature on (i) human-computer interaction (HCI) design for exploring geospatial data, (ii) eye tracking for cartographic user experience, and (iii) machine learning applied to vector geospatial data. The review indicates that combining eye tracking and machine learning is promising in terms of assisting geoexploration. However, more research is needed on eye tracking for interaction and personalization of cartographic/map interfaces as well as on machine learning for detection of geometries in vector format.","PeriodicalId":36401,"journal":{"name":"International Journal of Cartography","volume":"30 1","pages":"150 - 172"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Potential of eye-tracking for interactive geovisual exploration aided by machine learning\",\"authors\":\"M. Keskin, P. Kettunen\",\"doi\":\"10.1080/23729333.2022.2150379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This review article collects knowledge on the use of eye-tracking and machine learning methods for application in automated and interactive geovisualization systems. Our focus is on exploratory reading of geovisualizations (abbr. geoexploration) and on machine learning tools for exploring vector geospatial data. We particularly consider geospatial data that is unlabeled, confusing or unknown to the user. The contribution of the article is in (i) defining principles and requirements for enabling user interaction with the geovisualizations that learn from and adapt to user behavior, and (ii) reviewing the use of eye tracking and machine learning to design gaze-aware interactive map systems (GAIMS). In this context, we review literature on (i) human-computer interaction (HCI) design for exploring geospatial data, (ii) eye tracking for cartographic user experience, and (iii) machine learning applied to vector geospatial data. The review indicates that combining eye tracking and machine learning is promising in terms of assisting geoexploration. However, more research is needed on eye tracking for interaction and personalization of cartographic/map interfaces as well as on machine learning for detection of geometries in vector format.\",\"PeriodicalId\":36401,\"journal\":{\"name\":\"International Journal of Cartography\",\"volume\":\"30 1\",\"pages\":\"150 - 172\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cartography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23729333.2022.2150379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cartography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23729333.2022.2150379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

本文综述了眼动追踪和机器学习方法在自动化和交互式地理可视化系统中的应用。我们的重点是地理可视化的探索性阅读(缩写为geoexploration)和探索矢量地理空间数据的机器学习工具。我们特别考虑未标记、令人困惑或用户未知的地理空间数据。本文的贡献在于(i)定义了使用户能够与学习和适应用户行为的地理可视化进行交互的原则和要求,以及(ii)回顾了使用眼动追踪和机器学习来设计注视感知交互式地图系统(GAIMS)的情况。在此背景下,我们回顾了以下方面的文献:(i)用于探索地理空间数据的人机交互(HCI)设计,(ii)用于制图用户体验的眼动追踪,以及(iii)应用于矢量地理空间数据的机器学习。这篇综述表明,将眼动追踪和机器学习结合起来,在协助地质勘探方面是有希望的。然而,需要更多的研究用于交互和个性化的眼动追踪制图/地图界面,以及用于检测矢量格式几何图形的机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential of eye-tracking for interactive geovisual exploration aided by machine learning
ABSTRACT This review article collects knowledge on the use of eye-tracking and machine learning methods for application in automated and interactive geovisualization systems. Our focus is on exploratory reading of geovisualizations (abbr. geoexploration) and on machine learning tools for exploring vector geospatial data. We particularly consider geospatial data that is unlabeled, confusing or unknown to the user. The contribution of the article is in (i) defining principles and requirements for enabling user interaction with the geovisualizations that learn from and adapt to user behavior, and (ii) reviewing the use of eye tracking and machine learning to design gaze-aware interactive map systems (GAIMS). In this context, we review literature on (i) human-computer interaction (HCI) design for exploring geospatial data, (ii) eye tracking for cartographic user experience, and (iii) machine learning applied to vector geospatial data. The review indicates that combining eye tracking and machine learning is promising in terms of assisting geoexploration. However, more research is needed on eye tracking for interaction and personalization of cartographic/map interfaces as well as on machine learning for detection of geometries in vector format.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Cartography
International Journal of Cartography Social Sciences-Geography, Planning and Development
CiteScore
1.40
自引率
0.00%
发文量
13
期刊最新文献
Deep mapping Eagle Village Sense of space: memory map of Dakar, Senegal MAPS IN HISTORY: Richard Harrison as media cartographer Carto-City to Surface-City: un-mapping and re-mapping the urban emotion of missing Livestock demarcating livestock routes: a methodological proposal for enhancing transparency and legality in land management and linear infrastructure development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1