{"title":"一种用于2.4 ghz短距离无线通信的可调功率放大器,采用数字控制累加模式变容二极管阵列","authors":"Sanggil Kim, D. Im","doi":"10.1109/APCCAS.2016.7803951","DOIUrl":null,"url":null,"abstract":"The most popular tunable capacitor topologies in CMOS are the analog varactor and digitally controlled switched capacitor array (SCA). The conventional analog varactor shows a high quality factor (g-factor) in both the minimum capacitance (Cmin) and the maximum capacitance (Cmax) states with a wide tuning range, but it has a poor linearity performance due to the voltage dependent nonlinear capacitance. In case of the digitally controlled switched capacitor array, while it shows a very good linearity, its g-factor in Cmin state is strongly dependent on the substrate loss by the parasitic junction capacitances between p-well, deep n-well, and p-substrate and the substrate resistance. To overcome the aforementioned drawbacks of the analog varactor and the switched capacitor array, the digitally controlled binary-weighted accumulation-mode varactor array (AVA) is proposed. In the simulation, at 2.4 GHz frequency band, the proposed tunable capacitor shows a g-factor of greater than 60 over all states and a tuning range of 3. The inverter-based push-pull power amplifier (PA) with the tunable matching network (TMN) employing the proposed tunable capacitor extends the impedance coverage maintaining the output power of greater than 0 dBm under the worst case for antenna impedance mismatch.","PeriodicalId":6495,"journal":{"name":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"6 1","pages":"269-272"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A tunable power amplifier employing digitally controlled accumulation-mode varactor array for 2.4-GHz short-range wireless communication\",\"authors\":\"Sanggil Kim, D. Im\",\"doi\":\"10.1109/APCCAS.2016.7803951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most popular tunable capacitor topologies in CMOS are the analog varactor and digitally controlled switched capacitor array (SCA). The conventional analog varactor shows a high quality factor (g-factor) in both the minimum capacitance (Cmin) and the maximum capacitance (Cmax) states with a wide tuning range, but it has a poor linearity performance due to the voltage dependent nonlinear capacitance. In case of the digitally controlled switched capacitor array, while it shows a very good linearity, its g-factor in Cmin state is strongly dependent on the substrate loss by the parasitic junction capacitances between p-well, deep n-well, and p-substrate and the substrate resistance. To overcome the aforementioned drawbacks of the analog varactor and the switched capacitor array, the digitally controlled binary-weighted accumulation-mode varactor array (AVA) is proposed. In the simulation, at 2.4 GHz frequency band, the proposed tunable capacitor shows a g-factor of greater than 60 over all states and a tuning range of 3. The inverter-based push-pull power amplifier (PA) with the tunable matching network (TMN) employing the proposed tunable capacitor extends the impedance coverage maintaining the output power of greater than 0 dBm under the worst case for antenna impedance mismatch.\",\"PeriodicalId\":6495,\"journal\":{\"name\":\"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"6 1\",\"pages\":\"269-272\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.2016.7803951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2016.7803951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A tunable power amplifier employing digitally controlled accumulation-mode varactor array for 2.4-GHz short-range wireless communication
The most popular tunable capacitor topologies in CMOS are the analog varactor and digitally controlled switched capacitor array (SCA). The conventional analog varactor shows a high quality factor (g-factor) in both the minimum capacitance (Cmin) and the maximum capacitance (Cmax) states with a wide tuning range, but it has a poor linearity performance due to the voltage dependent nonlinear capacitance. In case of the digitally controlled switched capacitor array, while it shows a very good linearity, its g-factor in Cmin state is strongly dependent on the substrate loss by the parasitic junction capacitances between p-well, deep n-well, and p-substrate and the substrate resistance. To overcome the aforementioned drawbacks of the analog varactor and the switched capacitor array, the digitally controlled binary-weighted accumulation-mode varactor array (AVA) is proposed. In the simulation, at 2.4 GHz frequency band, the proposed tunable capacitor shows a g-factor of greater than 60 over all states and a tuning range of 3. The inverter-based push-pull power amplifier (PA) with the tunable matching network (TMN) employing the proposed tunable capacitor extends the impedance coverage maintaining the output power of greater than 0 dBm under the worst case for antenna impedance mismatch.