Malar Chellasivalingam, Brian M. Graves, A. Boies, A. Seshia
{"title":"用于粒子传感的弱耦合低q压电MEMS谐振器阵列的质量调谐","authors":"Malar Chellasivalingam, Brian M. Graves, A. Boies, A. Seshia","doi":"10.1109/MEMS46641.2020.9056426","DOIUrl":null,"url":null,"abstract":"This paper reports the achievement of a mass balanced condition in a low-Q weakly coupled MEMS resonator array for ultrafine aerosol particulate sensing. The mass balancing technique enables the lifetime extension of such real-time particulate sensors without employing any wet or dry-cleaning techniques to remove particles from the resonators. This mass balancing is demonstrated for both the flexural and bulk modes of the same coupled resonator array occurring at ∼54kHz and ∼2.53MHz, respectively. This system also demonstrates for a degree of passive environment immunity to temperature effects by using an amplitude ratio output metric. The Q factor of the coupled MEMS resonator system do not degrade substantially with increased particulate loading.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"15 1","pages":"761-764"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mass Tuning in Weakly Coupled Low-Q Piezoelectric MEMS Resonator Arrays for Particulate Sensing\",\"authors\":\"Malar Chellasivalingam, Brian M. Graves, A. Boies, A. Seshia\",\"doi\":\"10.1109/MEMS46641.2020.9056426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the achievement of a mass balanced condition in a low-Q weakly coupled MEMS resonator array for ultrafine aerosol particulate sensing. The mass balancing technique enables the lifetime extension of such real-time particulate sensors without employing any wet or dry-cleaning techniques to remove particles from the resonators. This mass balancing is demonstrated for both the flexural and bulk modes of the same coupled resonator array occurring at ∼54kHz and ∼2.53MHz, respectively. This system also demonstrates for a degree of passive environment immunity to temperature effects by using an amplitude ratio output metric. The Q factor of the coupled MEMS resonator system do not degrade substantially with increased particulate loading.\",\"PeriodicalId\":6776,\"journal\":{\"name\":\"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"15 1\",\"pages\":\"761-764\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMS46641.2020.9056426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mass Tuning in Weakly Coupled Low-Q Piezoelectric MEMS Resonator Arrays for Particulate Sensing
This paper reports the achievement of a mass balanced condition in a low-Q weakly coupled MEMS resonator array for ultrafine aerosol particulate sensing. The mass balancing technique enables the lifetime extension of such real-time particulate sensors without employing any wet or dry-cleaning techniques to remove particles from the resonators. This mass balancing is demonstrated for both the flexural and bulk modes of the same coupled resonator array occurring at ∼54kHz and ∼2.53MHz, respectively. This system also demonstrates for a degree of passive environment immunity to temperature effects by using an amplitude ratio output metric. The Q factor of the coupled MEMS resonator system do not degrade substantially with increased particulate loading.