基于模糊c回归模型(FCRM)和反向传播(BP)算法的自适应逆控制器设计

Shixiang Zhong
{"title":"基于模糊c回归模型(FCRM)和反向传播(BP)算法的自适应逆控制器设计","authors":"Shixiang Zhong","doi":"10.3390/INFO10120377","DOIUrl":null,"url":null,"abstract":"Establishing an accurate inverse model is a key problem in the design of adaptive inverse controllers. Most real objects have nonlinear characteristics, so mathematical expression of an inverse model cannot be obtained in most situation. A Takagi–Sugeno(T-S)fuzzy model can approximate real objects with high precision, and is often applied in the modeling of nonlinear systems. Since the consequent parameters of T-S fuzzy models are linear expressions, this paper firstly uses a fuzzy c-regression model (FCRM) clustering algorithm to establish inverse fuzzy model. As the least mean square (LMS) algorithm is only used to adjust consequent parameters of the T-S fuzzy model in the process of parameter adjustment, the premise parameters are fixed and unchanged in the process of adjustment. In this paper, the back propagation (BP) algorithm is applied to adjust the premise and consequent parameters of the T-S fuzzy model, simultaneously online. The simulation results show that the error between the system output controlled by proposed adaptive inverse controller and the desired output is smaller, also the system stability can be maintained when the system output has disturbances.","PeriodicalId":50362,"journal":{"name":"Information-An International Interdisciplinary Journal","volume":"11 1","pages":"377"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Inverse Controller Design Based on the Fuzzy C-Regression Model (FCRM) and Back Propagation (BP) Algorithm\",\"authors\":\"Shixiang Zhong\",\"doi\":\"10.3390/INFO10120377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Establishing an accurate inverse model is a key problem in the design of adaptive inverse controllers. Most real objects have nonlinear characteristics, so mathematical expression of an inverse model cannot be obtained in most situation. A Takagi–Sugeno(T-S)fuzzy model can approximate real objects with high precision, and is often applied in the modeling of nonlinear systems. Since the consequent parameters of T-S fuzzy models are linear expressions, this paper firstly uses a fuzzy c-regression model (FCRM) clustering algorithm to establish inverse fuzzy model. As the least mean square (LMS) algorithm is only used to adjust consequent parameters of the T-S fuzzy model in the process of parameter adjustment, the premise parameters are fixed and unchanged in the process of adjustment. In this paper, the back propagation (BP) algorithm is applied to adjust the premise and consequent parameters of the T-S fuzzy model, simultaneously online. The simulation results show that the error between the system output controlled by proposed adaptive inverse controller and the desired output is smaller, also the system stability can be maintained when the system output has disturbances.\",\"PeriodicalId\":50362,\"journal\":{\"name\":\"Information-An International Interdisciplinary Journal\",\"volume\":\"11 1\",\"pages\":\"377\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information-An International Interdisciplinary Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/INFO10120377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information-An International Interdisciplinary Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/INFO10120377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

建立精确的逆模型是自适应逆控制器设计中的关键问题。大多数实际物体都具有非线性特性,因此在大多数情况下无法得到逆模型的数学表达式。Takagi-Sugeno (T-S)模糊模型能以较高的精度逼近真实物体,常用于非线性系统的建模。由于T-S模糊模型的后续参数为线性表达式,本文首先采用模糊c回归模型(FCRM)聚类算法建立逆模糊模型。由于在参数调整过程中仅使用最小均方算法对T-S模糊模型的后续参数进行调整,因此在调整过程中前提参数是固定不变的。本文采用反向传播(BP)算法对T-S模糊模型的前提参数和后续参数进行在线同步调整。仿真结果表明,所提出的自适应逆控制器控制的系统输出与期望输出之间的误差较小,且在系统输出存在扰动时仍能保持系统的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Inverse Controller Design Based on the Fuzzy C-Regression Model (FCRM) and Back Propagation (BP) Algorithm
Establishing an accurate inverse model is a key problem in the design of adaptive inverse controllers. Most real objects have nonlinear characteristics, so mathematical expression of an inverse model cannot be obtained in most situation. A Takagi–Sugeno(T-S)fuzzy model can approximate real objects with high precision, and is often applied in the modeling of nonlinear systems. Since the consequent parameters of T-S fuzzy models are linear expressions, this paper firstly uses a fuzzy c-regression model (FCRM) clustering algorithm to establish inverse fuzzy model. As the least mean square (LMS) algorithm is only used to adjust consequent parameters of the T-S fuzzy model in the process of parameter adjustment, the premise parameters are fixed and unchanged in the process of adjustment. In this paper, the back propagation (BP) algorithm is applied to adjust the premise and consequent parameters of the T-S fuzzy model, simultaneously online. The simulation results show that the error between the system output controlled by proposed adaptive inverse controller and the desired output is smaller, also the system stability can be maintained when the system output has disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8.3 months
期刊最新文献
Sentiment Analysis using a CNN-BiLSTM Deep Model Based on Attention Classification A Study on the Changes in Safety Perception of Air Passengers in the Living with COVID-19 Era: The Case of South Korea Going Back to the Basic of Green Economy: Special Reference to Economic Interpretation and Policies Research on the Revitalization of the Defensive Fortress of the Great Wall Based on the Adversarial Interpretive-Structure Model An Analysis of Effect of Stress on Self-Efficacy of Flight Trainees in Korea: Using Multiple Regression Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1