超高性能混凝土梁内抗压和抗拉性能的数值模拟

A. Jabbar, L. Danha, Qais F. Hasan
{"title":"超高性能混凝土梁内抗压和抗拉性能的数值模拟","authors":"A. Jabbar, L. Danha, Qais F. Hasan","doi":"10.5937/jaes0-40769","DOIUrl":null,"url":null,"abstract":"Ultra-high-performance concrete (UHPC) differs in its structural behavior from conventional concrete due to its high compressive and tensile strength, stiffness, toughness, and durability. Therefore, UHPC needs an appropriate constitutive model to simulate its mechanical properties in finite element analysis. In this study, numerical models were developed to trace the structural behavior of UHPC beams upon loading since beam behavior depends on the constituents' response to compression and tension. New numerical models were formulated to display the stress-strain relationships of UHPC in compression and tension by adopting a new methodology that depended on actual results. The compressive stress-strain relationship included two portions; the ascending one for elastic and strain hardening up to compressive strength and a descending curve for the strain-softening until a 0.0062 strain. A linear elastic tensile stress-strain relation was applied until tensile strength. A tri-linear relationship was applied for stiffness degradation and crack propagation upon debonding fibers from the matrix until fracture. These numerical models were used in Abaqus software to simulate the UHPC beam behavior. The developed models were verified and proved for beams' behavior in flexure and shear. The results indicated that the models could predict UHPC beams' response throughout the entire loading until failure.","PeriodicalId":35468,"journal":{"name":"Journal of Applied Engineering Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical simulation of ultra-high-performance concrete's compressive and tensile behaviour in beams\",\"authors\":\"A. Jabbar, L. Danha, Qais F. Hasan\",\"doi\":\"10.5937/jaes0-40769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-high-performance concrete (UHPC) differs in its structural behavior from conventional concrete due to its high compressive and tensile strength, stiffness, toughness, and durability. Therefore, UHPC needs an appropriate constitutive model to simulate its mechanical properties in finite element analysis. In this study, numerical models were developed to trace the structural behavior of UHPC beams upon loading since beam behavior depends on the constituents' response to compression and tension. New numerical models were formulated to display the stress-strain relationships of UHPC in compression and tension by adopting a new methodology that depended on actual results. The compressive stress-strain relationship included two portions; the ascending one for elastic and strain hardening up to compressive strength and a descending curve for the strain-softening until a 0.0062 strain. A linear elastic tensile stress-strain relation was applied until tensile strength. A tri-linear relationship was applied for stiffness degradation and crack propagation upon debonding fibers from the matrix until fracture. These numerical models were used in Abaqus software to simulate the UHPC beam behavior. The developed models were verified and proved for beams' behavior in flexure and shear. The results indicated that the models could predict UHPC beams' response throughout the entire loading until failure.\",\"PeriodicalId\":35468,\"journal\":{\"name\":\"Journal of Applied Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Engineering Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/jaes0-40769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/jaes0-40769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

超高性能混凝土(UHPC)由于其高抗压和抗拉强度、刚度、韧性和耐久性,其结构性能与传统混凝土不同。因此,在有限元分析中需要合适的本构模型来模拟其力学性能。在这项研究中,开发了数值模型来跟踪UHPC梁在加载时的结构行为,因为梁的行为取决于构件对压缩和拉伸的响应。采用一种基于实际结果的新方法,建立了UHPC在压缩和拉伸下的应力-应变关系的数值模型。压应力-应变关系包括两部分;弹性硬化和应变硬化直至抗压强度呈上升曲线,应变软化直至0.0062应变呈下降曲线。采用线性弹性拉伸应力-应变关系直至拉伸强度。在纤维脱离基体直至断裂的过程中,刚度退化和裂纹扩展采用三线性关系。这些数值模型在Abaqus软件中被用来模拟UHPC梁的行为。所建立的模型对梁的抗弯抗剪性能进行了验证。结果表明,该模型能较好地预测超高压混凝土梁在整个加载过程中直至失效的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation of ultra-high-performance concrete's compressive and tensile behaviour in beams
Ultra-high-performance concrete (UHPC) differs in its structural behavior from conventional concrete due to its high compressive and tensile strength, stiffness, toughness, and durability. Therefore, UHPC needs an appropriate constitutive model to simulate its mechanical properties in finite element analysis. In this study, numerical models were developed to trace the structural behavior of UHPC beams upon loading since beam behavior depends on the constituents' response to compression and tension. New numerical models were formulated to display the stress-strain relationships of UHPC in compression and tension by adopting a new methodology that depended on actual results. The compressive stress-strain relationship included two portions; the ascending one for elastic and strain hardening up to compressive strength and a descending curve for the strain-softening until a 0.0062 strain. A linear elastic tensile stress-strain relation was applied until tensile strength. A tri-linear relationship was applied for stiffness degradation and crack propagation upon debonding fibers from the matrix until fracture. These numerical models were used in Abaqus software to simulate the UHPC beam behavior. The developed models were verified and proved for beams' behavior in flexure and shear. The results indicated that the models could predict UHPC beams' response throughout the entire loading until failure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Engineering Science
Journal of Applied Engineering Science Engineering-Engineering (all)
CiteScore
2.00
自引率
0.00%
发文量
122
审稿时长
12 weeks
期刊介绍: Since 2002 iipp build cooperation with its clients established on wealthy experience, interchangeable respect and trust and permanently arrangement with the purpose of successfully realization of projects recognizable according to good organization and high quality of provided favors. Working as unique team of highly motivated experts, Institute iipp provides to its customers the most high-quality solutions in domain of engineering consulting.
期刊最新文献
SIMULATION MODELING OF LOGGING HARVESTER MOVEMENTS DURING SELECTIVE LOGGING RISK MITIGATION AS A MEDIATING FACTOR IN THE RELATIONSHIP BETWEEN TOP MANAGEMENT SUPPORT AND CONSTRUCTION PROJECT PERFORMANCE 3D DOCUMENTATION OF CULTURAL HERITAGE USING TERRESTRIAL LASER SCANNING ROAD TRAFFIC ACCIDENTS FACTOR ON RURAL ARTERIAL ROADS RESTORATION OF LARGE MODULAR TEETH OF BALL MILL GEARS BY ELECTRO-SLAG SURFACE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1