施氮对大豆杂草区系及产量的影响[j]稳定。]作物

Nitrogen Pub Date : 2022-05-10 DOI:10.3390/nitrogen3020019
I. Kakabouki, Antonios Mavroeidis, Varvara Kouneli, Stella Karydogianni, Antigolena Folina, V. Triantafyllidis, Aspasia Efthimiadou, I. Roussis, A. Zotos, C. Kosma, Nikolaos Katsenios
{"title":"施氮对大豆杂草区系及产量的影响[j]稳定。]作物","authors":"I. Kakabouki, Antonios Mavroeidis, Varvara Kouneli, Stella Karydogianni, Antigolena Folina, V. Triantafyllidis, Aspasia Efthimiadou, I. Roussis, A. Zotos, C. Kosma, Nikolaos Katsenios","doi":"10.3390/nitrogen3020019","DOIUrl":null,"url":null,"abstract":"The literature suggests that nitrogen (N) fertilization increases yield in soybean. This study aimed to investigate the effects of N fertilization on: (i) The performance of soybean, and (ii) the weed flora. A two-year field experiment was carried out in Agrinio, Western Greece. The experiment was set up in a randomized complete block design, with four organic fertilizer treatments and six replications. The four treatments included 0 kg N ha−1 (N0/unfertilized control) and the application of 80 kg N ha−1, 100 kg N ha−1, and 120 kg N ha−1. The application of 120 N kg ha−1 resulted in the most notable increment of plant height (22.6–24%), biomass (10–13%), LAI values (14–17%), and yield (10–12%) compared to the N0. Compared to the N0, total weed biomass was increased by 26–32%, 34–49%, and 55–57% in N80, N100, and N120, respectively. The values of the H (Shannon), Dmg (Margalef), and J (Pielou) indices were unaffected by the fertilization, hence they did not affect weed biodiversity. CRI (crop resistance index), on the contrary, was negatively affected by N fertilization and was significantly reduced. Overall, our results indicate that the application of 80 kg N ha−1 is more efficient, can effectively improve the soybean performance, and enhance its yield.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effects of Nitrogen Fertilization on Weed Flora and Productivity of Soybean [Glycine max (L.) Merr.] Crop\",\"authors\":\"I. Kakabouki, Antonios Mavroeidis, Varvara Kouneli, Stella Karydogianni, Antigolena Folina, V. Triantafyllidis, Aspasia Efthimiadou, I. Roussis, A. Zotos, C. Kosma, Nikolaos Katsenios\",\"doi\":\"10.3390/nitrogen3020019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The literature suggests that nitrogen (N) fertilization increases yield in soybean. This study aimed to investigate the effects of N fertilization on: (i) The performance of soybean, and (ii) the weed flora. A two-year field experiment was carried out in Agrinio, Western Greece. The experiment was set up in a randomized complete block design, with four organic fertilizer treatments and six replications. The four treatments included 0 kg N ha−1 (N0/unfertilized control) and the application of 80 kg N ha−1, 100 kg N ha−1, and 120 kg N ha−1. The application of 120 N kg ha−1 resulted in the most notable increment of plant height (22.6–24%), biomass (10–13%), LAI values (14–17%), and yield (10–12%) compared to the N0. Compared to the N0, total weed biomass was increased by 26–32%, 34–49%, and 55–57% in N80, N100, and N120, respectively. The values of the H (Shannon), Dmg (Margalef), and J (Pielou) indices were unaffected by the fertilization, hence they did not affect weed biodiversity. CRI (crop resistance index), on the contrary, was negatively affected by N fertilization and was significantly reduced. Overall, our results indicate that the application of 80 kg N ha−1 is more efficient, can effectively improve the soybean performance, and enhance its yield.\",\"PeriodicalId\":19365,\"journal\":{\"name\":\"Nitrogen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nitrogen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/nitrogen3020019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitrogen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nitrogen3020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

文献表明,施氮可提高大豆产量。本研究旨在探讨施氮对大豆生产性能和杂草区系的影响。在希腊西部的阿格里尼奥进行了为期两年的实地试验。试验采用完全随机区组设计,4个有机肥处理,6个重复。4个处理分别为0 kg N ha - 1 (N0/未施肥对照)、80 kg N ha - 1、100 kg N ha - 1和120 kg N ha - 1。与氮肥处理相比,施用120 N kg ha−1后,株高(22.6-24%)、生物量(10-13%)、叶面积指数(14-17%)和产量(10-12%)的增加最为显著。与N0相比,N80、N100和N120处理的杂草总生物量分别增加了26-32%、34-49%和55-57%。H (Shannon)、Dmg (Margalef)和J (Pielou)指数不受施肥影响,不影响杂草多样性。CRI(作物抗性指数)则受氮肥的负向影响,显著降低。综上所述,施用80 kg N ha - 1处理效率更高,可有效改善大豆生产性能,提高产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Nitrogen Fertilization on Weed Flora and Productivity of Soybean [Glycine max (L.) Merr.] Crop
The literature suggests that nitrogen (N) fertilization increases yield in soybean. This study aimed to investigate the effects of N fertilization on: (i) The performance of soybean, and (ii) the weed flora. A two-year field experiment was carried out in Agrinio, Western Greece. The experiment was set up in a randomized complete block design, with four organic fertilizer treatments and six replications. The four treatments included 0 kg N ha−1 (N0/unfertilized control) and the application of 80 kg N ha−1, 100 kg N ha−1, and 120 kg N ha−1. The application of 120 N kg ha−1 resulted in the most notable increment of plant height (22.6–24%), biomass (10–13%), LAI values (14–17%), and yield (10–12%) compared to the N0. Compared to the N0, total weed biomass was increased by 26–32%, 34–49%, and 55–57% in N80, N100, and N120, respectively. The values of the H (Shannon), Dmg (Margalef), and J (Pielou) indices were unaffected by the fertilization, hence they did not affect weed biodiversity. CRI (crop resistance index), on the contrary, was negatively affected by N fertilization and was significantly reduced. Overall, our results indicate that the application of 80 kg N ha−1 is more efficient, can effectively improve the soybean performance, and enhance its yield.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Climate Change and Nitrogen Dynamics: Challenges and Strategies for a Sustainable Future Biotransforming of Poultry and Swine Slaughterhouse Waste as an Alternative Protein Source for Ruminant Feeding Nitrogen Uptake and Use Efficiency in Winter Camelina with Applied N Recent Advances in Application of 1D Nanomaterials for Photocatalytic Nitrogen Fixation Crop Rotation and Nitrogen Fertilizer on Nitrate Leaching: Insights from a Low Rainfall Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1