约束环境下的阴影分割与分类

Jiang C.X., Ward M.O.
{"title":"约束环境下的阴影分割与分类","authors":"Jiang C.X.,&nbsp;Ward M.O.","doi":"10.1006/ciun.1994.1014","DOIUrl":null,"url":null,"abstract":"<div><p>A shadow identification and classification method for real images is developed in this paper. The method is based on the extensive analysis of shadow intensity and shadow geometry in an environment with simple objects and a single area light source. The procedure for identifying shadows is divided into three processes: low level, middle level, and high level. The low level process extracts dark regions from images. Dark regions contain both shadows and surfaces with low reflectance. The middle level process performs feature analysis on dark regions, including detecting vertices on the outlines of dark regions, identifying penumbrae in dark regions. classifying the subregions in dark regions as self-shadows or cast shadows, and finding object regions adjacent to dark regions. The high level process integrates the infonnation derived from the previous processes and confirms shadows among the dark regions.</p></div>","PeriodicalId":100350,"journal":{"name":"CVGIP: Image Understanding","volume":"59 2","pages":"Pages 213-225"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/ciun.1994.1014","citationCount":"67","resultStr":"{\"title\":\"Shadow Segmentation and Classification in a Constrained Environment\",\"authors\":\"Jiang C.X.,&nbsp;Ward M.O.\",\"doi\":\"10.1006/ciun.1994.1014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A shadow identification and classification method for real images is developed in this paper. The method is based on the extensive analysis of shadow intensity and shadow geometry in an environment with simple objects and a single area light source. The procedure for identifying shadows is divided into three processes: low level, middle level, and high level. The low level process extracts dark regions from images. Dark regions contain both shadows and surfaces with low reflectance. The middle level process performs feature analysis on dark regions, including detecting vertices on the outlines of dark regions, identifying penumbrae in dark regions. classifying the subregions in dark regions as self-shadows or cast shadows, and finding object regions adjacent to dark regions. The high level process integrates the infonnation derived from the previous processes and confirms shadows among the dark regions.</p></div>\",\"PeriodicalId\":100350,\"journal\":{\"name\":\"CVGIP: Image Understanding\",\"volume\":\"59 2\",\"pages\":\"Pages 213-225\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/ciun.1994.1014\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CVGIP: Image Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S104996608471014X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Image Understanding","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104996608471014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

本文提出了一种真实图像阴影识别与分类方法。该方法基于对简单物体和单一区域光源环境中阴影强度和阴影几何的广泛分析。识别阴影的过程分为三个阶段:低级、中级和高级。低级处理从图像中提取暗区。暗区包含阴影和低反射率的表面。中间层过程对暗区域进行特征分析,包括检测暗区域轮廓上的顶点,识别暗区域中的半影。将暗区域中的子区域分类为自阴影或投射阴影,并寻找与暗区域相邻的目标区域。高阶过程整合前阶过程的信息,确认暗区中的阴影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shadow Segmentation and Classification in a Constrained Environment

A shadow identification and classification method for real images is developed in this paper. The method is based on the extensive analysis of shadow intensity and shadow geometry in an environment with simple objects and a single area light source. The procedure for identifying shadows is divided into three processes: low level, middle level, and high level. The low level process extracts dark regions from images. Dark regions contain both shadows and surfaces with low reflectance. The middle level process performs feature analysis on dark regions, including detecting vertices on the outlines of dark regions, identifying penumbrae in dark regions. classifying the subregions in dark regions as self-shadows or cast shadows, and finding object regions adjacent to dark regions. The high level process integrates the infonnation derived from the previous processes and confirms shadows among the dark regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-Based Binocular Vergence Control and Depth Reconstruction Using Active Vision 3D Structure Reconstruction from Point Correspondences between two Perspective Projections Default Shape Theory: With Application to the Computation of the Direction of the Light Source Computational Cross Ratio for Computer Vision Refining 3D reconstruction: a theoretical and experimental study of the effect of cross-correlations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1