一种简单水杨醛吡嗪作为Al3+和Zn2+识别的荧光化学传感器及其应用

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Reviews in Analytical Chemistry Pub Date : 2022-01-01 DOI:10.1515/revac-2022-0043
Yucun Liu, Miao Wu, Jihan Zhao, Yuan Wang, Yongling Zhang
{"title":"一种简单水杨醛吡嗪作为Al3+和Zn2+识别的荧光化学传感器及其应用","authors":"Yucun Liu, Miao Wu, Jihan Zhao, Yuan Wang, Yongling Zhang","doi":"10.1515/revac-2022-0043","DOIUrl":null,"url":null,"abstract":"Abstract A simple fluorescent chemosensor, 5-(diethylamino)-2-((2-(pyrazin-2-yl) hydrazono)methyl)phenol, has been synthesized by Schiff-base condensation reaction. The chemosensor exhibited highly selective and sensitive “off-on” fluorescent responses toward Al3+ and Zn2+ but the signal of fluorescence emission varies. The detection limits were found to be 2.33 × 10−7 M for Al3+ and 1.68 × 10−7 M for Zn2+, respectively. The binding mechanisms between chemosensor and Al3+ or Zn2+ ions were supported by Job′s, 1H NMR, Fourier transform infrared spectra, and MS experiments. The sensing behavior was also studied with molecular logic functions of OR, AND, and NOT gates. In addition, the chemosensor was able to detect Al3+ and Zn2+ by producing distinct color changes observed by the naked eye on sensor-coated swabs. Moreover, the chemosensor was successfully applied to effectively detect Al3+ and Zn2+ in actual water and drug samples. Graphical abstract","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A simple salicylaldehyde-bearing pyrazine as a turn-on fluorescent chemosensor for Al3+ and Zn2+ recognition and its applications\",\"authors\":\"Yucun Liu, Miao Wu, Jihan Zhao, Yuan Wang, Yongling Zhang\",\"doi\":\"10.1515/revac-2022-0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A simple fluorescent chemosensor, 5-(diethylamino)-2-((2-(pyrazin-2-yl) hydrazono)methyl)phenol, has been synthesized by Schiff-base condensation reaction. The chemosensor exhibited highly selective and sensitive “off-on” fluorescent responses toward Al3+ and Zn2+ but the signal of fluorescence emission varies. The detection limits were found to be 2.33 × 10−7 M for Al3+ and 1.68 × 10−7 M for Zn2+, respectively. The binding mechanisms between chemosensor and Al3+ or Zn2+ ions were supported by Job′s, 1H NMR, Fourier transform infrared spectra, and MS experiments. The sensing behavior was also studied with molecular logic functions of OR, AND, and NOT gates. In addition, the chemosensor was able to detect Al3+ and Zn2+ by producing distinct color changes observed by the naked eye on sensor-coated swabs. Moreover, the chemosensor was successfully applied to effectively detect Al3+ and Zn2+ in actual water and drug samples. Graphical abstract\",\"PeriodicalId\":21090,\"journal\":{\"name\":\"Reviews in Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/revac-2022-0043\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2022-0043","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要采用希夫碱缩合反应合成了一种简单的荧光化学传感器5-(二乙基氨基)-2-((2-(吡嗪-2-基)腙)甲基)苯酚。该化学传感器对Al3+和Zn2+具有高选择性和高灵敏度的“开关”荧光响应,但荧光发射信号不同。Al3+和Zn2+的检出限分别为2.33 × 10−7 M和1.68 × 10−7 M。Job’s、1H NMR、傅里叶变换红外光谱和质谱实验支持了化学传感器与Al3+或Zn2+离子的结合机制。利用或门、与门和非门的分子逻辑函数对传感行为进行了研究。此外,该化学传感器能够通过在涂有传感器的拭子上产生肉眼观察到的明显颜色变化来检测Al3+和Zn2+。此外,该化学传感器成功地应用于实际水和药物样品中Al3+和Zn2+的有效检测。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simple salicylaldehyde-bearing pyrazine as a turn-on fluorescent chemosensor for Al3+ and Zn2+ recognition and its applications
Abstract A simple fluorescent chemosensor, 5-(diethylamino)-2-((2-(pyrazin-2-yl) hydrazono)methyl)phenol, has been synthesized by Schiff-base condensation reaction. The chemosensor exhibited highly selective and sensitive “off-on” fluorescent responses toward Al3+ and Zn2+ but the signal of fluorescence emission varies. The detection limits were found to be 2.33 × 10−7 M for Al3+ and 1.68 × 10−7 M for Zn2+, respectively. The binding mechanisms between chemosensor and Al3+ or Zn2+ ions were supported by Job′s, 1H NMR, Fourier transform infrared spectra, and MS experiments. The sensing behavior was also studied with molecular logic functions of OR, AND, and NOT gates. In addition, the chemosensor was able to detect Al3+ and Zn2+ by producing distinct color changes observed by the naked eye on sensor-coated swabs. Moreover, the chemosensor was successfully applied to effectively detect Al3+ and Zn2+ in actual water and drug samples. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Analytical Chemistry
Reviews in Analytical Chemistry 化学-分析化学
CiteScore
7.50
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Reviews in Analytical Chemistry publishes authoritative reviews by leading experts in the dynamic field of chemical analysis. The subjects can encompass all branches of modern analytical chemistry such as spectroscopy, chromatography, mass spectrometry, electrochemistry and trace analysis and their applications to areas such as environmental control, pharmaceutical industry, automation and other relevant areas. Review articles bring the expert up to date in a concise manner and provide researchers an overview of new techniques and methods.
期刊最新文献
Quantitative methods in the analysis of clozapine in human matrices – A scoping review Latest trends in honey contaminant analysis, challenges, and opportunities for green chemistry development A novel Six Sigma approach and eco-friendly RP-HPLC technique for determination of pimavanserin and its degraded products: Application of Box–Behnken design Recent advance in electrochemical immunosensors for lung cancer biomarkers sensing Greenness of dispersive microextraction using molecularly imprinted polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1