{"title":"阿戈美拉汀在 LPS 诱导的精神病相关行为模型中的保护作用","authors":"Sema Inanir, Umit Sertan Copoglu, Hanifi Kokacya, Recep Dokuyucu, Oytun Erbas, Ahmet Inanir","doi":"10.12659/msm.895505","DOIUrl":null,"url":null,"abstract":"<p><p>BACKGROUND The aim of this study was to investigate the effect of agomelatine in a psychosis-relevant behavior model. MATERIAL AND METHODS We used 18 adult male Wistar rats in this study. Twelve rats given LPS for endotoxemia were randomly divided into 2 groups (n=6). Group I was treated with 1 mL/kg 0.9% NaCl i.p. and Group II was treated with 40 mg/kg agomelatine. Six normal rats served as the control group and were not given LPS for endotoxemia. Cylindrical steel cages containing vertical and horizontal metal bars with top cover were used. Rats were put in these cages for the purpose of orientation for 10 min. Apomorphine was given to rats removed from cages, and then they were immediately put back in the cages for the purpose of observing stereotyped conduct. Brain HVA levels and plasma TNF-a levels were evaluated in tissue homogenates using ELISA. The proportion of malondialdehyde (MDA) was measured in samples taken from plasma for detection of lipid peroxidation similar to thiobarbituric acid reactive substances. RESULTS LPS induced-plasma TNF-α, brain TNF-α, and plasma MDA levels were significantly lower in the LPS+agomelatine group compared to the LPS+saline group (p<0.05). HVA levels and stereotype scores were significantly lower in the LPS+agomelatine group compared to the LPS+saline group (p <0.001). CONCLUSIONS Agomelatine reduced TNF-α, HVA, MDA levels, and the stereotype score in relevant models of psychosis. Our results suggest that the anti-inflammatory effect of agomelatine involved oxidant cleansing properties and that its effects on the metabolism of dopamine can play an important role in the model of psychosis. </p>","PeriodicalId":72888,"journal":{"name":"Electroencephalography and clinical neurophysiology","volume":"95 1","pages":"3834-9"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4677693/pdf/","citationCount":"0","resultStr":"{\"title\":\"Agomelatine Protection in an LPS-Induced Psychosis-Relevant Behavior Model.\",\"authors\":\"Sema Inanir, Umit Sertan Copoglu, Hanifi Kokacya, Recep Dokuyucu, Oytun Erbas, Ahmet Inanir\",\"doi\":\"10.12659/msm.895505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BACKGROUND The aim of this study was to investigate the effect of agomelatine in a psychosis-relevant behavior model. MATERIAL AND METHODS We used 18 adult male Wistar rats in this study. Twelve rats given LPS for endotoxemia were randomly divided into 2 groups (n=6). Group I was treated with 1 mL/kg 0.9% NaCl i.p. and Group II was treated with 40 mg/kg agomelatine. Six normal rats served as the control group and were not given LPS for endotoxemia. Cylindrical steel cages containing vertical and horizontal metal bars with top cover were used. Rats were put in these cages for the purpose of orientation for 10 min. Apomorphine was given to rats removed from cages, and then they were immediately put back in the cages for the purpose of observing stereotyped conduct. Brain HVA levels and plasma TNF-a levels were evaluated in tissue homogenates using ELISA. The proportion of malondialdehyde (MDA) was measured in samples taken from plasma for detection of lipid peroxidation similar to thiobarbituric acid reactive substances. RESULTS LPS induced-plasma TNF-α, brain TNF-α, and plasma MDA levels were significantly lower in the LPS+agomelatine group compared to the LPS+saline group (p<0.05). HVA levels and stereotype scores were significantly lower in the LPS+agomelatine group compared to the LPS+saline group (p <0.001). CONCLUSIONS Agomelatine reduced TNF-α, HVA, MDA levels, and the stereotype score in relevant models of psychosis. Our results suggest that the anti-inflammatory effect of agomelatine involved oxidant cleansing properties and that its effects on the metabolism of dopamine can play an important role in the model of psychosis. </p>\",\"PeriodicalId\":72888,\"journal\":{\"name\":\"Electroencephalography and clinical neurophysiology\",\"volume\":\"95 1\",\"pages\":\"3834-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4677693/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroencephalography and clinical neurophysiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12659/msm.895505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroencephalography and clinical neurophysiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12659/msm.895505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Agomelatine Protection in an LPS-Induced Psychosis-Relevant Behavior Model.
BACKGROUND The aim of this study was to investigate the effect of agomelatine in a psychosis-relevant behavior model. MATERIAL AND METHODS We used 18 adult male Wistar rats in this study. Twelve rats given LPS for endotoxemia were randomly divided into 2 groups (n=6). Group I was treated with 1 mL/kg 0.9% NaCl i.p. and Group II was treated with 40 mg/kg agomelatine. Six normal rats served as the control group and were not given LPS for endotoxemia. Cylindrical steel cages containing vertical and horizontal metal bars with top cover were used. Rats were put in these cages for the purpose of orientation for 10 min. Apomorphine was given to rats removed from cages, and then they were immediately put back in the cages for the purpose of observing stereotyped conduct. Brain HVA levels and plasma TNF-a levels were evaluated in tissue homogenates using ELISA. The proportion of malondialdehyde (MDA) was measured in samples taken from plasma for detection of lipid peroxidation similar to thiobarbituric acid reactive substances. RESULTS LPS induced-plasma TNF-α, brain TNF-α, and plasma MDA levels were significantly lower in the LPS+agomelatine group compared to the LPS+saline group (p<0.05). HVA levels and stereotype scores were significantly lower in the LPS+agomelatine group compared to the LPS+saline group (p <0.001). CONCLUSIONS Agomelatine reduced TNF-α, HVA, MDA levels, and the stereotype score in relevant models of psychosis. Our results suggest that the anti-inflammatory effect of agomelatine involved oxidant cleansing properties and that its effects on the metabolism of dopamine can play an important role in the model of psychosis.