搅拌铸造Al-7075/TiC复合材料的腐蚀磨损性能研究

Manoj Velishala, Mahesh Pandiripalli, Vanitha Chilamban
{"title":"搅拌铸造Al-7075/TiC复合材料的腐蚀磨损性能研究","authors":"Manoj Velishala, Mahesh Pandiripalli, Vanitha Chilamban","doi":"10.30544/816","DOIUrl":null,"url":null,"abstract":"Metal matrix composites (MMCs) play a crucial role in the aerospace, automotive and mineral processing industries. The properties of aluminum matrix composites (AMC) that are renowned for their high strength, good stiffness and excellent thermal conductivity can be enhanced by incorporating various reinforcements. In this investigation, Al7075 alloy with TiC (3, 6, and 9 wt.%) reinforcements was processed via stir casting. Optical microscope (OM) and scanning electron microscope (SEM) were utilized to study the microstructural changes. The chemical composition and phases were analyzed using energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) respectively. Evaluations were conducted on properties such as hardness, tensile strength, corrosion and wear behavior. On increasing the wt.% of TiC from 3 to 9 wt.%, it was observed that the hardness increased by 11%, the tensile strength increased by 200%, and the wear rate decreased by 50%. The composite containing 9 wt.% TiC had the lowest corrosion resistance.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on corrosion and wear properties of Al-7075/TiC composites fabricated by stir casting route\",\"authors\":\"Manoj Velishala, Mahesh Pandiripalli, Vanitha Chilamban\",\"doi\":\"10.30544/816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal matrix composites (MMCs) play a crucial role in the aerospace, automotive and mineral processing industries. The properties of aluminum matrix composites (AMC) that are renowned for their high strength, good stiffness and excellent thermal conductivity can be enhanced by incorporating various reinforcements. In this investigation, Al7075 alloy with TiC (3, 6, and 9 wt.%) reinforcements was processed via stir casting. Optical microscope (OM) and scanning electron microscope (SEM) were utilized to study the microstructural changes. The chemical composition and phases were analyzed using energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) respectively. Evaluations were conducted on properties such as hardness, tensile strength, corrosion and wear behavior. On increasing the wt.% of TiC from 3 to 9 wt.%, it was observed that the hardness increased by 11%, the tensile strength increased by 200%, and the wear rate decreased by 50%. The composite containing 9 wt.% TiC had the lowest corrosion resistance.\",\"PeriodicalId\":18466,\"journal\":{\"name\":\"Metallurgical and Materials Engineering\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30544/816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30544/816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属基复合材料(MMCs)在航空航天、汽车和矿物加工行业中发挥着至关重要的作用。铝基复合材料(AMC)以其高强度,良好的刚度和优异的导热性而闻名,可以通过加入各种增强剂来增强其性能。在本研究中,采用搅拌铸造工艺对Al7075合金进行了TiC (3,6,9 wt.%)增强。利用光学显微镜(OM)和扫描电镜(SEM)研究了显微组织的变化。分别用能谱仪(EDS)和x射线衍射仪(XRD)对其化学成分和物相进行了分析。对材料的硬度、抗拉强度、腐蚀和磨损性能进行了评价。当TiC的wt %由3%提高到9%时,硬度提高11%,抗拉强度提高200%,磨损率降低50%。含9 wt.% TiC的复合材料的耐蚀性最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on corrosion and wear properties of Al-7075/TiC composites fabricated by stir casting route
Metal matrix composites (MMCs) play a crucial role in the aerospace, automotive and mineral processing industries. The properties of aluminum matrix composites (AMC) that are renowned for their high strength, good stiffness and excellent thermal conductivity can be enhanced by incorporating various reinforcements. In this investigation, Al7075 alloy with TiC (3, 6, and 9 wt.%) reinforcements was processed via stir casting. Optical microscope (OM) and scanning electron microscope (SEM) were utilized to study the microstructural changes. The chemical composition and phases were analyzed using energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) respectively. Evaluations were conducted on properties such as hardness, tensile strength, corrosion and wear behavior. On increasing the wt.% of TiC from 3 to 9 wt.%, it was observed that the hardness increased by 11%, the tensile strength increased by 200%, and the wear rate decreased by 50%. The composite containing 9 wt.% TiC had the lowest corrosion resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Mechanical-Elastic Parameters of Reservoir Rocks with Respect to the Purpose of Permanent CO2 Storage Mechanical and Thermal Properties of Polyurethane-Palm Fronds Ash Composites Analysis of Friction stir processed surface quality of AA2098 aluminum alloy for aeronautical applications Review Of Grain Refinement Performance Of Aluminium Cast Alloys In Situ Production of B4C and FeV Enriched Composite Surface on Low Carbon Steel by Cast Sintering Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1