{"title":"外加纵向电磁场作用下GMAW复合材料堆焊试样的显微组织和力学性能","authors":"Ji’an Luo","doi":"10.2207/QJJWS.29.76S","DOIUrl":null,"url":null,"abstract":"In order to meet requirements of hot forge mould in the plastic manufacturing fields, the gas metal arc welding (GMAW) with a longitudinal electromagnetic field (LMF-GMAW) is applied to manufacture the bimetal thermal forming mould and repair the old die. The microstructure and mechanical properties are analyzed by SEM, EDS, micro-hardness, wear-resistance and thermal physical simulation testing methods. Our study shows that the LMF-GMAW method can increase the wear resistance property of the surfacing layer, enhance the interface bonding ability and improve the thermal mechanical strength of bimetal overlay work pieces.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Microstructure and mechanical properties of overlaying specimens in GMAW hybrid an additional longitudinal electromagnetic field\",\"authors\":\"Ji’an Luo\",\"doi\":\"10.2207/QJJWS.29.76S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to meet requirements of hot forge mould in the plastic manufacturing fields, the gas metal arc welding (GMAW) with a longitudinal electromagnetic field (LMF-GMAW) is applied to manufacture the bimetal thermal forming mould and repair the old die. The microstructure and mechanical properties are analyzed by SEM, EDS, micro-hardness, wear-resistance and thermal physical simulation testing methods. Our study shows that the LMF-GMAW method can increase the wear resistance property of the surfacing layer, enhance the interface bonding ability and improve the thermal mechanical strength of bimetal overlay work pieces.\",\"PeriodicalId\":23197,\"journal\":{\"name\":\"Transactions of JWRI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of JWRI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2207/QJJWS.29.76S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of JWRI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2207/QJJWS.29.76S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microstructure and mechanical properties of overlaying specimens in GMAW hybrid an additional longitudinal electromagnetic field
In order to meet requirements of hot forge mould in the plastic manufacturing fields, the gas metal arc welding (GMAW) with a longitudinal electromagnetic field (LMF-GMAW) is applied to manufacture the bimetal thermal forming mould and repair the old die. The microstructure and mechanical properties are analyzed by SEM, EDS, micro-hardness, wear-resistance and thermal physical simulation testing methods. Our study shows that the LMF-GMAW method can increase the wear resistance property of the surfacing layer, enhance the interface bonding ability and improve the thermal mechanical strength of bimetal overlay work pieces.