Abdolvahhab Fetanat, Mohsen Tayebi, G. Shafipour, Mehran Moteraghi
{"title":"建筑能源管理系统中可持续性监测与评估的fsQCA与数字设计的新型集成方法:案例研究","authors":"Abdolvahhab Fetanat, Mohsen Tayebi, G. Shafipour, Mehran Moteraghi","doi":"10.1080/19401493.2022.2112758","DOIUrl":null,"url":null,"abstract":"The present study provides potentially interesting for researchers in the novel integrated method of the fuzzy set qualitative comparative analysis (fsQCA) and digital design methodology to apply in the field of energy and sustainability of socio-technical systems (STSs) used in the building energy management (BEM). The research sample is the air-conditioning system (ACS). The social and technical aspects of ACS are satisfaction and energy consumption. Ten sustainability criteria are applied to assess and monitor the fields of energy consumption and satisfaction with the aim of achieving sustainable consumption in the use of ACSs for BEM. This action can be carried out by nesting a circuit in a microprocessor and microcontroller for use in a building energy management system (BEMS). According to, the circuit obtained from the assessment of the study can be practically implemented and assembled in a BEMS as online. This work can define a sustainability-based BEMS.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"69 1","pages":"107 - 130"},"PeriodicalIF":2.2000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel integrated method of fsQCA and digital design for sustainability monitoring and assessment in building energy management systems: a case study\",\"authors\":\"Abdolvahhab Fetanat, Mohsen Tayebi, G. Shafipour, Mehran Moteraghi\",\"doi\":\"10.1080/19401493.2022.2112758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study provides potentially interesting for researchers in the novel integrated method of the fuzzy set qualitative comparative analysis (fsQCA) and digital design methodology to apply in the field of energy and sustainability of socio-technical systems (STSs) used in the building energy management (BEM). The research sample is the air-conditioning system (ACS). The social and technical aspects of ACS are satisfaction and energy consumption. Ten sustainability criteria are applied to assess and monitor the fields of energy consumption and satisfaction with the aim of achieving sustainable consumption in the use of ACSs for BEM. This action can be carried out by nesting a circuit in a microprocessor and microcontroller for use in a building energy management system (BEMS). According to, the circuit obtained from the assessment of the study can be practically implemented and assembled in a BEMS as online. This work can define a sustainability-based BEMS.\",\"PeriodicalId\":49168,\"journal\":{\"name\":\"Journal of Building Performance Simulation\",\"volume\":\"69 1\",\"pages\":\"107 - 130\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Building Performance Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/19401493.2022.2112758\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2112758","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
A novel integrated method of fsQCA and digital design for sustainability monitoring and assessment in building energy management systems: a case study
The present study provides potentially interesting for researchers in the novel integrated method of the fuzzy set qualitative comparative analysis (fsQCA) and digital design methodology to apply in the field of energy and sustainability of socio-technical systems (STSs) used in the building energy management (BEM). The research sample is the air-conditioning system (ACS). The social and technical aspects of ACS are satisfaction and energy consumption. Ten sustainability criteria are applied to assess and monitor the fields of energy consumption and satisfaction with the aim of achieving sustainable consumption in the use of ACSs for BEM. This action can be carried out by nesting a circuit in a microprocessor and microcontroller for use in a building energy management system (BEMS). According to, the circuit obtained from the assessment of the study can be practically implemented and assembled in a BEMS as online. This work can define a sustainability-based BEMS.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.