{"title":"基于卫星的MODIS日间云/雪描绘技术。","authors":"S. Miller, Thomas F. Lee, R. Fennimore","doi":"10.1175/JAM2252.1","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents two multispectral enhancement techniques for distinguishing between regions of cloud and snow cover using optical spectrum passive radiometer satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Fundamental to the techniques are the 1.6- and 2.2-μm shortwave infrared bands that are useful in distinguishing between absorbing snow cover (having low reflectance) and less absorbing liquid-phase clouds (higher reflectance). The 1.38-μm band helps to overcome ambiguities that arise in the case of optically thin cirrus. Designed to provide straightforward, stand-alone environmental characterization for operational forecasters (e.g., military weather forecasters in the context of mission planning), these products portray the information that is contained within complex scenes as value-added, readily interpretable imagery at the highest available spatial resolution. Their utility in scene characterization and quality control of digital snow maps is dem...","PeriodicalId":15026,"journal":{"name":"Journal of Applied Meteorology","volume":"27 1","pages":"987-997"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Satellite-Based Imagery Techniques for Daytime Cloud/Snow Delineation from MODIS.\",\"authors\":\"S. Miller, Thomas F. Lee, R. Fennimore\",\"doi\":\"10.1175/JAM2252.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents two multispectral enhancement techniques for distinguishing between regions of cloud and snow cover using optical spectrum passive radiometer satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Fundamental to the techniques are the 1.6- and 2.2-μm shortwave infrared bands that are useful in distinguishing between absorbing snow cover (having low reflectance) and less absorbing liquid-phase clouds (higher reflectance). The 1.38-μm band helps to overcome ambiguities that arise in the case of optically thin cirrus. Designed to provide straightforward, stand-alone environmental characterization for operational forecasters (e.g., military weather forecasters in the context of mission planning), these products portray the information that is contained within complex scenes as value-added, readily interpretable imagery at the highest available spatial resolution. Their utility in scene characterization and quality control of digital snow maps is dem...\",\"PeriodicalId\":15026,\"journal\":{\"name\":\"Journal of Applied Meteorology\",\"volume\":\"27 1\",\"pages\":\"987-997\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/JAM2252.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JAM2252.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Satellite-Based Imagery Techniques for Daytime Cloud/Snow Delineation from MODIS.
Abstract This paper presents two multispectral enhancement techniques for distinguishing between regions of cloud and snow cover using optical spectrum passive radiometer satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Fundamental to the techniques are the 1.6- and 2.2-μm shortwave infrared bands that are useful in distinguishing between absorbing snow cover (having low reflectance) and less absorbing liquid-phase clouds (higher reflectance). The 1.38-μm band helps to overcome ambiguities that arise in the case of optically thin cirrus. Designed to provide straightforward, stand-alone environmental characterization for operational forecasters (e.g., military weather forecasters in the context of mission planning), these products portray the information that is contained within complex scenes as value-added, readily interpretable imagery at the highest available spatial resolution. Their utility in scene characterization and quality control of digital snow maps is dem...