{"title":"经典Richardson外推在显式一步法中的一致性与收敛性","authors":"Teshome Bayleyegn, I. Faragó, Ágnes Havasi","doi":"10.3846/mma.2023.16283","DOIUrl":null,"url":null,"abstract":"The consistency of the classical Richardson extrapolation (CRE), a simple and robust computational device, is analysed for the case where the underlying method is an explicit one-step numerical method for ordinary differential equations with order of consistency one or two. It is shown in the classical framework that the CRE increases the order of consistency by one. The convergence of the method is proved by the assumption that the time-stepping operator of the base method has the Lipschitz property in its second argument.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"13 1","pages":"42-52"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Consistency and convergence of Classical Richardson extrapolation as Applied to Explicit One-Step Methods\",\"authors\":\"Teshome Bayleyegn, I. Faragó, Ágnes Havasi\",\"doi\":\"10.3846/mma.2023.16283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The consistency of the classical Richardson extrapolation (CRE), a simple and robust computational device, is analysed for the case where the underlying method is an explicit one-step numerical method for ordinary differential equations with order of consistency one or two. It is shown in the classical framework that the CRE increases the order of consistency by one. The convergence of the method is proved by the assumption that the time-stepping operator of the base method has the Lipschitz property in its second argument.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"13 1\",\"pages\":\"42-52\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2023.16283\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2023.16283","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Consistency and convergence of Classical Richardson extrapolation as Applied to Explicit One-Step Methods
The consistency of the classical Richardson extrapolation (CRE), a simple and robust computational device, is analysed for the case where the underlying method is an explicit one-step numerical method for ordinary differential equations with order of consistency one or two. It is shown in the classical framework that the CRE increases the order of consistency by one. The convergence of the method is proved by the assumption that the time-stepping operator of the base method has the Lipschitz property in its second argument.