基于忆阻器的神经网络目标检测

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2022-12-01 DOI:10.1016/j.hcc.2022.100085
Ravikumar KI , Sukumar R
{"title":"基于忆阻器的神经网络目标检测","authors":"Ravikumar KI ,&nbsp;Sukumar R","doi":"10.1016/j.hcc.2022.100085","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing growth of AI, big data analytics, cloud computing, and Internet of Things applications, developing memristor devices and related hardware systems to compute the deep learning application needs extensive data calculations with low power consumption and lesser chip area. Deep learning model is one of the AI methods which is gaining importance in object detection, natural language processing, and pattern recognition. A large amount of data handling is essential for driving the deep learning model with less power consumption. To address these issues, the paper proposed the Memristor-based object detection on the CIFAR-10 dataset and achieved an accuracy of 85 percent. The memtorch package in python is employed to predict the objects for implementation.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"2 4","pages":"Article 100085"},"PeriodicalIF":3.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266729522200037X/pdfft?md5=4f237eb3a43f11d8635378359665b321&pid=1-s2.0-S266729522200037X-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Memristor based object detection using neural network\",\"authors\":\"Ravikumar KI ,&nbsp;Sukumar R\",\"doi\":\"10.1016/j.hcc.2022.100085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the increasing growth of AI, big data analytics, cloud computing, and Internet of Things applications, developing memristor devices and related hardware systems to compute the deep learning application needs extensive data calculations with low power consumption and lesser chip area. Deep learning model is one of the AI methods which is gaining importance in object detection, natural language processing, and pattern recognition. A large amount of data handling is essential for driving the deep learning model with less power consumption. To address these issues, the paper proposed the Memristor-based object detection on the CIFAR-10 dataset and achieved an accuracy of 85 percent. The memtorch package in python is employed to predict the objects for implementation.</p></div>\",\"PeriodicalId\":100605,\"journal\":{\"name\":\"High-Confidence Computing\",\"volume\":\"2 4\",\"pages\":\"Article 100085\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266729522200037X/pdfft?md5=4f237eb3a43f11d8635378359665b321&pid=1-s2.0-S266729522200037X-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Confidence Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266729522200037X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266729522200037X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

随着人工智能、大数据分析、云计算、物联网等应用的不断发展,开发忆阻器器件及相关硬件系统来计算深度学习应用,需要大量的数据计算、低功耗和更小的芯片面积。深度学习模型是人工智能的一种方法,在目标检测、自然语言处理和模式识别等领域越来越受到重视。大量的数据处理对于驱动功耗更低的深度学习模型至关重要。为了解决这些问题,本文在CIFAR-10数据集上提出了基于忆阻器的目标检测,并实现了85%的准确率。python中的memtorch包用于预测要实现的对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Memristor based object detection using neural network

With the increasing growth of AI, big data analytics, cloud computing, and Internet of Things applications, developing memristor devices and related hardware systems to compute the deep learning application needs extensive data calculations with low power consumption and lesser chip area. Deep learning model is one of the AI methods which is gaining importance in object detection, natural language processing, and pattern recognition. A large amount of data handling is essential for driving the deep learning model with less power consumption. To address these issues, the paper proposed the Memristor-based object detection on the CIFAR-10 dataset and achieved an accuracy of 85 percent. The memtorch package in python is employed to predict the objects for implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Identity-based threshold (multi) signature with private accountability for privacy-preserving blockchain Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153] On Building Automation System security SoK: Decentralized Storage Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1