I. Kourakis, P. Shukla, V. Koukouloyannis, B. Farokhi
{"title":"尘埃等离子体晶体中的局部激发:理论结果综述","authors":"I. Kourakis, P. Shukla, V. Koukouloyannis, B. Farokhi","doi":"10.1109/PLASMA.2008.4591167","DOIUrl":null,"url":null,"abstract":"The nonlinear aspects of dust motion in one- (1D) and two-dimensional (2D) dust lattices are reviewed. Horizontal (longitudinal, acoustic) as well as vertical (transverse, optic-like) dust grain motion in 1D monolayer is studied. Dust crystals are shown to support nonlinear kink-shaped solitary excitations (density solitons), related to longitudinal (in-plane) dust grain displacement, as well as modulated envelope localized modes associated with either longitudinal (in-plane, acoustic) or transverse (off-plane, inverse-optic) oscillations. Highly localized excitations (\"Discrete Breathers\"), associated with transverse dust-grain motion in 1D dust crystals, may also exist, as recently shown from first principles. Hexagonal (2D) dust lattices sustain modulated envelope structures, formed via modulational instability of in-plane vibrations. Discrete analysis of hexagonal crystals also suggests the occurrence of ultra-localized modes and vortices. With the exception of longitudinal density solitons, the above theoretical predictions have not yet been tested in the laboratory. This provides a challenging test-bed for experimental investigations, which will hopefully confirm these results.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localized excitations in dusty plasma crystals: A survey of theoretical results\",\"authors\":\"I. Kourakis, P. Shukla, V. Koukouloyannis, B. Farokhi\",\"doi\":\"10.1109/PLASMA.2008.4591167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear aspects of dust motion in one- (1D) and two-dimensional (2D) dust lattices are reviewed. Horizontal (longitudinal, acoustic) as well as vertical (transverse, optic-like) dust grain motion in 1D monolayer is studied. Dust crystals are shown to support nonlinear kink-shaped solitary excitations (density solitons), related to longitudinal (in-plane) dust grain displacement, as well as modulated envelope localized modes associated with either longitudinal (in-plane, acoustic) or transverse (off-plane, inverse-optic) oscillations. Highly localized excitations (\\\"Discrete Breathers\\\"), associated with transverse dust-grain motion in 1D dust crystals, may also exist, as recently shown from first principles. Hexagonal (2D) dust lattices sustain modulated envelope structures, formed via modulational instability of in-plane vibrations. Discrete analysis of hexagonal crystals also suggests the occurrence of ultra-localized modes and vortices. With the exception of longitudinal density solitons, the above theoretical predictions have not yet been tested in the laboratory. This provides a challenging test-bed for experimental investigations, which will hopefully confirm these results.\",\"PeriodicalId\":6359,\"journal\":{\"name\":\"2008 IEEE 35th International Conference on Plasma Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 35th International Conference on Plasma Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2008.4591167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 35th International Conference on Plasma Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2008.4591167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Localized excitations in dusty plasma crystals: A survey of theoretical results
The nonlinear aspects of dust motion in one- (1D) and two-dimensional (2D) dust lattices are reviewed. Horizontal (longitudinal, acoustic) as well as vertical (transverse, optic-like) dust grain motion in 1D monolayer is studied. Dust crystals are shown to support nonlinear kink-shaped solitary excitations (density solitons), related to longitudinal (in-plane) dust grain displacement, as well as modulated envelope localized modes associated with either longitudinal (in-plane, acoustic) or transverse (off-plane, inverse-optic) oscillations. Highly localized excitations ("Discrete Breathers"), associated with transverse dust-grain motion in 1D dust crystals, may also exist, as recently shown from first principles. Hexagonal (2D) dust lattices sustain modulated envelope structures, formed via modulational instability of in-plane vibrations. Discrete analysis of hexagonal crystals also suggests the occurrence of ultra-localized modes and vortices. With the exception of longitudinal density solitons, the above theoretical predictions have not yet been tested in the laboratory. This provides a challenging test-bed for experimental investigations, which will hopefully confirm these results.