在混合数据类型的关系数据库中检测相关列

H. Nguyen, Emmanuel Müller, Periklis Andritsos, Klemens Böhm
{"title":"在混合数据类型的关系数据库中检测相关列","authors":"H. Nguyen, Emmanuel Müller, Periklis Andritsos, Klemens Böhm","doi":"10.1145/2618243.2618251","DOIUrl":null,"url":null,"abstract":"In a database, besides known dependencies among columns (e.g., foreign key and primary key constraints), there are many other correlations unknown to the database users. Extraction of such hidden correlations is known to be useful for various tasks in database optimization and data analytics. However, the task is challenging due to the lack of measures to quantify column correlations. Correlations may exist among columns of different data types and value domains, which makes techniques based on value matching inapplicable. Besides, a column may have multiple semantics, which does not allow disjoint partitioning of columns. Finally, from a computational perspective, one has to consider a huge search space that grows exponentially with the number of columns.\n In this paper, we present a novel method for detecting column correlations (DeCoRel). It aims at discovering overlapping groups of correlated columns with mixed data types in relational databases. To handle the heterogeneity of data types, we propose a new correlation measure that combines the good features of Shannon entropy and cumulative entropy. To address the huge search space, we introduce an efficient algorithm for the column grouping. Compared to state of the art techniques, we show our method to be more general than one of the most recent approaches in the database literature. Experiments reveal that our method achieves both higher quality and better scalability than existing techniques.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"12 1","pages":"30:1-30:12"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Detecting correlated columns in relational databases with mixed data types\",\"authors\":\"H. Nguyen, Emmanuel Müller, Periklis Andritsos, Klemens Böhm\",\"doi\":\"10.1145/2618243.2618251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a database, besides known dependencies among columns (e.g., foreign key and primary key constraints), there are many other correlations unknown to the database users. Extraction of such hidden correlations is known to be useful for various tasks in database optimization and data analytics. However, the task is challenging due to the lack of measures to quantify column correlations. Correlations may exist among columns of different data types and value domains, which makes techniques based on value matching inapplicable. Besides, a column may have multiple semantics, which does not allow disjoint partitioning of columns. Finally, from a computational perspective, one has to consider a huge search space that grows exponentially with the number of columns.\\n In this paper, we present a novel method for detecting column correlations (DeCoRel). It aims at discovering overlapping groups of correlated columns with mixed data types in relational databases. To handle the heterogeneity of data types, we propose a new correlation measure that combines the good features of Shannon entropy and cumulative entropy. To address the huge search space, we introduce an efficient algorithm for the column grouping. Compared to state of the art techniques, we show our method to be more general than one of the most recent approaches in the database literature. Experiments reveal that our method achieves both higher quality and better scalability than existing techniques.\",\"PeriodicalId\":74773,\"journal\":{\"name\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"volume\":\"12 1\",\"pages\":\"30:1-30:12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2618243.2618251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在数据库中,除了列之间已知的依赖关系(例如,外键和主键约束)之外,还有许多数据库用户不知道的其他相关性。众所周知,提取这种隐藏的相关性对于数据库优化和数据分析中的各种任务非常有用。然而,由于缺乏量化列相关性的措施,这项任务具有挑战性。不同数据类型和值域的列之间可能存在相关性,这使得基于值匹配的技术不适用。此外,一个列可以有多个语义,这就不允许对列进行不相交的分区。最后,从计算的角度来看,必须考虑一个巨大的搜索空间,它随着列的数量呈指数级增长。在本文中,我们提出了一种新的检测列相关性的方法(DeCoRel)。它旨在发现关系数据库中具有混合数据类型的相关列的重叠组。为了处理数据类型的异质性,我们提出了一种结合Shannon熵和累积熵的优点的新的相关度量。为了解决巨大的搜索空间,我们引入了一种高效的列分组算法。与最先进的技术相比,我们的方法比数据库文献中最新的方法更通用。实验结果表明,该方法比现有方法具有更高的质量和更好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting correlated columns in relational databases with mixed data types
In a database, besides known dependencies among columns (e.g., foreign key and primary key constraints), there are many other correlations unknown to the database users. Extraction of such hidden correlations is known to be useful for various tasks in database optimization and data analytics. However, the task is challenging due to the lack of measures to quantify column correlations. Correlations may exist among columns of different data types and value domains, which makes techniques based on value matching inapplicable. Besides, a column may have multiple semantics, which does not allow disjoint partitioning of columns. Finally, from a computational perspective, one has to consider a huge search space that grows exponentially with the number of columns. In this paper, we present a novel method for detecting column correlations (DeCoRel). It aims at discovering overlapping groups of correlated columns with mixed data types in relational databases. To handle the heterogeneity of data types, we propose a new correlation measure that combines the good features of Shannon entropy and cumulative entropy. To address the huge search space, we introduce an efficient algorithm for the column grouping. Compared to state of the art techniques, we show our method to be more general than one of the most recent approaches in the database literature. Experiments reveal that our method achieves both higher quality and better scalability than existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1