人体动作识别的高效混合算法

Q3 Computer Science 中国图象图形学报 Pub Date : 2023-03-01 DOI:10.18178/joig.11.1.72-81
Mostafa A. Abdelrazik, A. Zekry, W. A. Mohamed
{"title":"人体动作识别的高效混合算法","authors":"Mostafa A. Abdelrazik, A. Zekry, W. A. Mohamed","doi":"10.18178/joig.11.1.72-81","DOIUrl":null,"url":null,"abstract":"Recently, researchers have sought to find the ideal way to recognize human actions through video using artificial intelligence due to the multiplicity of applications that rely on it in many fields. In general, the methods have been divided into traditional methods and deep learning methods, which have provided a qualitative leap in the field of computer vision. Convolutional neural network CNN and recurrent neural network RNN are the most popular algorithms used with images and video. The researchers combined the two algorithms to search for the best results in a lot of research. In an attempt to obtain improved results in motion recognition through video, we present in this paper a combined algorithm, which is divided into two main parts, CNN and RNN. In the first part there is a preprocessing stage to make the video frame suitable for the input of both CNN networks which consist of a fusion of Inception-ResNet-V2 and GoogleNet to obtain activations, with the previously trained wights in Inception-ResNet-V2 and GoogleNet and then passed to a deep Gated Recurrent Units (GRU) connected to a fully connected SoftMax layer to recognize and distinguish the human action in the video. The results show that the proposed algorithm gives better accuracy of 97.97% with the UCF101 dataset and 73.12% in the hdmb51 data set compared to those present in the related literature.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient Hybrid Algorithm for Human Action Recognition\",\"authors\":\"Mostafa A. Abdelrazik, A. Zekry, W. A. Mohamed\",\"doi\":\"10.18178/joig.11.1.72-81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, researchers have sought to find the ideal way to recognize human actions through video using artificial intelligence due to the multiplicity of applications that rely on it in many fields. In general, the methods have been divided into traditional methods and deep learning methods, which have provided a qualitative leap in the field of computer vision. Convolutional neural network CNN and recurrent neural network RNN are the most popular algorithms used with images and video. The researchers combined the two algorithms to search for the best results in a lot of research. In an attempt to obtain improved results in motion recognition through video, we present in this paper a combined algorithm, which is divided into two main parts, CNN and RNN. In the first part there is a preprocessing stage to make the video frame suitable for the input of both CNN networks which consist of a fusion of Inception-ResNet-V2 and GoogleNet to obtain activations, with the previously trained wights in Inception-ResNet-V2 and GoogleNet and then passed to a deep Gated Recurrent Units (GRU) connected to a fully connected SoftMax layer to recognize and distinguish the human action in the video. The results show that the proposed algorithm gives better accuracy of 97.97% with the UCF101 dataset and 73.12% in the hdmb51 data set compared to those present in the related literature.\",\"PeriodicalId\":36336,\"journal\":{\"name\":\"中国图象图形学报\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国图象图形学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.18178/joig.11.1.72-81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.1.72-81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

摘要

最近,由于许多领域依赖于人工智能的应用程序的多样性,研究人员一直在寻求通过视频识别人类行为的理想方法。总的来说,方法分为传统方法和深度学习方法,它们在计算机视觉领域提供了质的飞跃。卷积神经网络(CNN)和循环神经网络(RNN)是处理图像和视频最常用的算法。研究人员将这两种算法结合起来,在许多研究中寻找最佳结果。为了在视频运动识别中获得更好的效果,本文提出了一种组合算法,该算法分为CNN和RNN两个主要部分。在第一部分中,有一个预处理阶段,使视频帧适合两个CNN网络的输入,由Inception-ResNet-V2和GoogleNet融合组成,以获得激活,然后将之前在Inception-ResNet-V2和GoogleNet中训练的权重传递给与全连接的SoftMax层连接的深度门控循环单元(GRU),以识别和区分视频中的人类动作。结果表明,与现有文献相比,该算法在UCF101数据集上的准确率为97.97%,在hdmb51数据集上的准确率为73.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Hybrid Algorithm for Human Action Recognition
Recently, researchers have sought to find the ideal way to recognize human actions through video using artificial intelligence due to the multiplicity of applications that rely on it in many fields. In general, the methods have been divided into traditional methods and deep learning methods, which have provided a qualitative leap in the field of computer vision. Convolutional neural network CNN and recurrent neural network RNN are the most popular algorithms used with images and video. The researchers combined the two algorithms to search for the best results in a lot of research. In an attempt to obtain improved results in motion recognition through video, we present in this paper a combined algorithm, which is divided into two main parts, CNN and RNN. In the first part there is a preprocessing stage to make the video frame suitable for the input of both CNN networks which consist of a fusion of Inception-ResNet-V2 and GoogleNet to obtain activations, with the previously trained wights in Inception-ResNet-V2 and GoogleNet and then passed to a deep Gated Recurrent Units (GRU) connected to a fully connected SoftMax layer to recognize and distinguish the human action in the video. The results show that the proposed algorithm gives better accuracy of 97.97% with the UCF101 dataset and 73.12% in the hdmb51 data set compared to those present in the related literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国图象图形学报
中国图象图形学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍: Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics. Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art. Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.
期刊最新文献
Roselle Pest Detection and Classification Using Threshold and Template Matching Human Action Recognition with Skeleton and Infrared Fusion Model Melanoma Detection Based on SVM Using MATLAB Evaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline MonitoringEvaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline Monitoring Improving Brain Tumor Classification Efficacy through the Application of Feature Selection and Ensemble Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1