可再生能源用准y源高增益DC/DC谐振变换器的设计与分析

Sugali Harinaik, Shelas Sathyan
{"title":"可再生能源用准y源高增益DC/DC谐振变换器的设计与分析","authors":"Sugali Harinaik, Shelas Sathyan","doi":"10.13052/dgaej2156-3306.3829","DOIUrl":null,"url":null,"abstract":"This paper proposes a magnetically coupled partial resonant isolated quasi-Y source DC/DC converter. Here, to achieve soft switching, there is no additional auxiliary circuits or magnetic components are used. By making use of transformer’s parasitic elements like winding capacitance (Cp) and leakage inductance (Lk1), zero current switching (ZCS) is obtained at the turn-off instant of all MOSFETs. Hence, the converter can operate at a higher frequency, so that compact size and good efficiency are feasible. This converter inherits all the conventional impedance source converter features, and a higher gain is obtained by using three winding coupled inductor and isolation transformer with small shoot-through duty (dST). Hence, the continuous input current (CIC) and galvanic isolation feature of this converter is most suitable for renewable energy applications. Also, the output voltage is regulated by changing the switching frequency. Finally, a 300 W prototype is designed and tested in the laboratory. The simulation, experimental results with mathematical and design analysis are provided.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Quasi-Y Source High Gain DC/DC Resonant Converter for Renewable Energy Applications\",\"authors\":\"Sugali Harinaik, Shelas Sathyan\",\"doi\":\"10.13052/dgaej2156-3306.3829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a magnetically coupled partial resonant isolated quasi-Y source DC/DC converter. Here, to achieve soft switching, there is no additional auxiliary circuits or magnetic components are used. By making use of transformer’s parasitic elements like winding capacitance (Cp) and leakage inductance (Lk1), zero current switching (ZCS) is obtained at the turn-off instant of all MOSFETs. Hence, the converter can operate at a higher frequency, so that compact size and good efficiency are feasible. This converter inherits all the conventional impedance source converter features, and a higher gain is obtained by using three winding coupled inductor and isolation transformer with small shoot-through duty (dST). Hence, the continuous input current (CIC) and galvanic isolation feature of this converter is most suitable for renewable energy applications. Also, the output voltage is regulated by changing the switching frequency. Finally, a 300 W prototype is designed and tested in the laboratory. The simulation, experimental results with mathematical and design analysis are provided.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.3829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种磁耦合部分谐振隔离型准y源DC/DC变换器。在这里,为了实现软开关,没有使用额外的辅助电路或磁性元件。利用变压器的绕组电容(Cp)和漏感(Lk1)等寄生元件,在所有mosfet的关断瞬间获得零电流开关(ZCS)。因此,变换器可以在更高的频率下工作,从而实现紧凑的体积和良好的效率。该变换器继承了传统阻抗源变换器的所有特性,并采用三绕组耦合电感和隔离变压器,具有较小的通空率(dST),获得了更高的增益。因此,该变换器的连续输入电流(CIC)和电流隔离特性最适合于可再生能源应用。另外,通过改变开关频率来调节输出电压。最后,设计了一个300w的样机,并在实验室进行了测试。给出了仿真、实验结果,并进行了数学分析和设计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Analysis of Quasi-Y Source High Gain DC/DC Resonant Converter for Renewable Energy Applications
This paper proposes a magnetically coupled partial resonant isolated quasi-Y source DC/DC converter. Here, to achieve soft switching, there is no additional auxiliary circuits or magnetic components are used. By making use of transformer’s parasitic elements like winding capacitance (Cp) and leakage inductance (Lk1), zero current switching (ZCS) is obtained at the turn-off instant of all MOSFETs. Hence, the converter can operate at a higher frequency, so that compact size and good efficiency are feasible. This converter inherits all the conventional impedance source converter features, and a higher gain is obtained by using three winding coupled inductor and isolation transformer with small shoot-through duty (dST). Hence, the continuous input current (CIC) and galvanic isolation feature of this converter is most suitable for renewable energy applications. Also, the output voltage is regulated by changing the switching frequency. Finally, a 300 W prototype is designed and tested in the laboratory. The simulation, experimental results with mathematical and design analysis are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Power Grid User Behavior Based on Data Mining Algorithms – System Design and Implementation Load Frequency Control Strategy of Interconnected Power System Based on Tube DMPC KWH Cost Analysis of Energy Storage Power Station Based on Changing Trend of Battery Cost Study on PV Power Prediction Based on VMD-IGWO-LSTM Research on Environmental Performance and Measurement of Smart City Power Supply Based on Non Radial Network DEA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1