{"title":"可再生能源用准y源高增益DC/DC谐振变换器的设计与分析","authors":"Sugali Harinaik, Shelas Sathyan","doi":"10.13052/dgaej2156-3306.3829","DOIUrl":null,"url":null,"abstract":"This paper proposes a magnetically coupled partial resonant isolated quasi-Y source DC/DC converter. Here, to achieve soft switching, there is no additional auxiliary circuits or magnetic components are used. By making use of transformer’s parasitic elements like winding capacitance (Cp) and leakage inductance (Lk1), zero current switching (ZCS) is obtained at the turn-off instant of all MOSFETs. Hence, the converter can operate at a higher frequency, so that compact size and good efficiency are feasible. This converter inherits all the conventional impedance source converter features, and a higher gain is obtained by using three winding coupled inductor and isolation transformer with small shoot-through duty (dST). Hence, the continuous input current (CIC) and galvanic isolation feature of this converter is most suitable for renewable energy applications. Also, the output voltage is regulated by changing the switching frequency. Finally, a 300 W prototype is designed and tested in the laboratory. The simulation, experimental results with mathematical and design analysis are provided.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Quasi-Y Source High Gain DC/DC Resonant Converter for Renewable Energy Applications\",\"authors\":\"Sugali Harinaik, Shelas Sathyan\",\"doi\":\"10.13052/dgaej2156-3306.3829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a magnetically coupled partial resonant isolated quasi-Y source DC/DC converter. Here, to achieve soft switching, there is no additional auxiliary circuits or magnetic components are used. By making use of transformer’s parasitic elements like winding capacitance (Cp) and leakage inductance (Lk1), zero current switching (ZCS) is obtained at the turn-off instant of all MOSFETs. Hence, the converter can operate at a higher frequency, so that compact size and good efficiency are feasible. This converter inherits all the conventional impedance source converter features, and a higher gain is obtained by using three winding coupled inductor and isolation transformer with small shoot-through duty (dST). Hence, the continuous input current (CIC) and galvanic isolation feature of this converter is most suitable for renewable energy applications. Also, the output voltage is regulated by changing the switching frequency. Finally, a 300 W prototype is designed and tested in the laboratory. The simulation, experimental results with mathematical and design analysis are provided.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.3829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Analysis of Quasi-Y Source High Gain DC/DC Resonant Converter for Renewable Energy Applications
This paper proposes a magnetically coupled partial resonant isolated quasi-Y source DC/DC converter. Here, to achieve soft switching, there is no additional auxiliary circuits or magnetic components are used. By making use of transformer’s parasitic elements like winding capacitance (Cp) and leakage inductance (Lk1), zero current switching (ZCS) is obtained at the turn-off instant of all MOSFETs. Hence, the converter can operate at a higher frequency, so that compact size and good efficiency are feasible. This converter inherits all the conventional impedance source converter features, and a higher gain is obtained by using three winding coupled inductor and isolation transformer with small shoot-through duty (dST). Hence, the continuous input current (CIC) and galvanic isolation feature of this converter is most suitable for renewable energy applications. Also, the output voltage is regulated by changing the switching frequency. Finally, a 300 W prototype is designed and tested in the laboratory. The simulation, experimental results with mathematical and design analysis are provided.