{"title":"仿人机器人足球BarelangFC自定位的实时坐标估计","authors":"Susanto Susanto, Taufiq Tegar Pratama, Riska Analia","doi":"10.30871/ji.v14i2.4110","DOIUrl":null,"url":null,"abstract":"In implementation, of the humanoid robot soccer consists of more than three robots when played soccer on the field. All the robots needed to be played the soccer as human done such as seeking, chasing, dribbling and kicking the ball. To do all of these commands, it is required a real-time localization system so that each robot will understand not only the robot position itself but also the other robots and even the object on the field’s environment. However, in real-time implementation and due to the limited ability of the robot computation, it is necessary to determine a method which has fast computation and able to save much memory. Therefore, in this paper we presented a real-time localization implementation method using the odometry and Monte Carlo Localization (MCL) method. In order to verify the performance of this method, some experiment has been carried out in real-time application. From the experimental result, the proposed method able to estimate the coordinate of each robot position in X and Y position on the field.","PeriodicalId":17757,"journal":{"name":"JURNAL INTEGRASI PROSES","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Coordinate Estimation for Self-Localization of the Humanoid Robot Soccer BarelangFC\",\"authors\":\"Susanto Susanto, Taufiq Tegar Pratama, Riska Analia\",\"doi\":\"10.30871/ji.v14i2.4110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In implementation, of the humanoid robot soccer consists of more than three robots when played soccer on the field. All the robots needed to be played the soccer as human done such as seeking, chasing, dribbling and kicking the ball. To do all of these commands, it is required a real-time localization system so that each robot will understand not only the robot position itself but also the other robots and even the object on the field’s environment. However, in real-time implementation and due to the limited ability of the robot computation, it is necessary to determine a method which has fast computation and able to save much memory. Therefore, in this paper we presented a real-time localization implementation method using the odometry and Monte Carlo Localization (MCL) method. In order to verify the performance of this method, some experiment has been carried out in real-time application. From the experimental result, the proposed method able to estimate the coordinate of each robot position in X and Y position on the field.\",\"PeriodicalId\":17757,\"journal\":{\"name\":\"JURNAL INTEGRASI PROSES\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JURNAL INTEGRASI PROSES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30871/ji.v14i2.4110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL INTEGRASI PROSES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30871/ji.v14i2.4110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time Coordinate Estimation for Self-Localization of the Humanoid Robot Soccer BarelangFC
In implementation, of the humanoid robot soccer consists of more than three robots when played soccer on the field. All the robots needed to be played the soccer as human done such as seeking, chasing, dribbling and kicking the ball. To do all of these commands, it is required a real-time localization system so that each robot will understand not only the robot position itself but also the other robots and even the object on the field’s environment. However, in real-time implementation and due to the limited ability of the robot computation, it is necessary to determine a method which has fast computation and able to save much memory. Therefore, in this paper we presented a real-time localization implementation method using the odometry and Monte Carlo Localization (MCL) method. In order to verify the performance of this method, some experiment has been carried out in real-time application. From the experimental result, the proposed method able to estimate the coordinate of each robot position in X and Y position on the field.