财务报表审计报告意见与例外预测的问题转化方法——以加里曼丹省中部财务报表审计为例

Allantutra Guslawa, Endroyono, S. M. S. Nugroho
{"title":"财务报表审计报告意见与例外预测的问题转化方法——以加里曼丹省中部财务报表审计为例","authors":"Allantutra Guslawa, Endroyono, S. M. S. Nugroho","doi":"10.1109/ICOIACT.2018.8350755","DOIUrl":null,"url":null,"abstract":"The previous research related to financial statements audit mostly used single-label classification, such as opinion prediction, opinion identification, and opinion detection. We propose the use of multi-label classification to predict the “opinion and exceptions” using data from financial statements audit reports in Central Kalimantan province. We use financial ratios as attributes as well as opinion and exceptions as labels. In this research, we use three of Problem Transformation Methods, namely Binary Relevance (BR), Classifier Chains (CC) and Random k-labelsets (RAkEL), where each of will be combined with three of base classifiers such as J48, SMO, and Random Forest. The best evaluation metrics results for Hamming Loss is 0.19, for One-Error is 0.253, for Rank Loss is 0.16, and for Average Precision is 0.793.","PeriodicalId":6660,"journal":{"name":"2018 International Conference on Information and Communications Technology (ICOIACT)","volume":"60 1","pages":"747-752"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Problem transformation methods for prediction of opinion and exceptions in financial statements audit reports: Case for financial statements audit in central Kalimantan province\",\"authors\":\"Allantutra Guslawa, Endroyono, S. M. S. Nugroho\",\"doi\":\"10.1109/ICOIACT.2018.8350755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The previous research related to financial statements audit mostly used single-label classification, such as opinion prediction, opinion identification, and opinion detection. We propose the use of multi-label classification to predict the “opinion and exceptions” using data from financial statements audit reports in Central Kalimantan province. We use financial ratios as attributes as well as opinion and exceptions as labels. In this research, we use three of Problem Transformation Methods, namely Binary Relevance (BR), Classifier Chains (CC) and Random k-labelsets (RAkEL), where each of will be combined with three of base classifiers such as J48, SMO, and Random Forest. The best evaluation metrics results for Hamming Loss is 0.19, for One-Error is 0.253, for Rank Loss is 0.16, and for Average Precision is 0.793.\",\"PeriodicalId\":6660,\"journal\":{\"name\":\"2018 International Conference on Information and Communications Technology (ICOIACT)\",\"volume\":\"60 1\",\"pages\":\"747-752\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Communications Technology (ICOIACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIACT.2018.8350755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communications Technology (ICOIACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIACT.2018.8350755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

以往与财务报表审计相关的研究多采用单标签分类,如意见预测、意见识别、意见检测等。本文利用中加里曼丹省财务报表审计报告数据,提出采用多标签分类方法预测“意见与例外”。我们使用财务比率作为属性,并使用意见和例外作为标签。在本研究中,我们使用了三种问题转换方法,即二进制关联(BR)、分类器链(CC)和随机k-标签集(RAkEL),其中每种方法都将与J48、SMO和随机森林等三个基本分类器相结合。Hamming Loss的最佳评价指标为0.19,One-Error的最佳评价指标为0.253,Rank Loss的最佳评价指标为0.16,Average Precision的最佳评价指标为0.793。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Problem transformation methods for prediction of opinion and exceptions in financial statements audit reports: Case for financial statements audit in central Kalimantan province
The previous research related to financial statements audit mostly used single-label classification, such as opinion prediction, opinion identification, and opinion detection. We propose the use of multi-label classification to predict the “opinion and exceptions” using data from financial statements audit reports in Central Kalimantan province. We use financial ratios as attributes as well as opinion and exceptions as labels. In this research, we use three of Problem Transformation Methods, namely Binary Relevance (BR), Classifier Chains (CC) and Random k-labelsets (RAkEL), where each of will be combined with three of base classifiers such as J48, SMO, and Random Forest. The best evaluation metrics results for Hamming Loss is 0.19, for One-Error is 0.253, for Rank Loss is 0.16, and for Average Precision is 0.793.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Normalization and Database Design for Joglosemar Tourism Management of fault tolerance and traffic congestion in cloud data center Development of smart public transportation system in Jakarta city based on integrated IoT platform Improving the quality of enterprise IT goals using COBIT 5 prioritization approach Data mining technique with cluster anaysis use K-means algorithm for LQ45 index on Indonesia stock exchange
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1