电网中可扩展的用户分配:数据驱动的方法

Bo Lyu, Shijian Li, Yanhua Li, Jie Fu, Andrew C. Trapp, Haiyong Xie, Yong Liao
{"title":"电网中可扩展的用户分配:数据驱动的方法","authors":"Bo Lyu, Shijian Li, Yanhua Li, Jie Fu, Andrew C. Trapp, Haiyong Xie, Yong Liao","doi":"10.1145/2996913.2996970","DOIUrl":null,"url":null,"abstract":"The fast pace of global urbanization is drastically changing the population distributions over the world, which leads to significant changes in geographical population densities. Such changes in turn alter the underlying geographical power demand over time, and drive power substations to become over-supplied (demand << capacity) or under-supplied (demand ≈ capacity). In this paper, we make the first attempt to investigate the problem of power substation-user assignment by analyzing large-scale power grid data. We develop a Scalable Power User Assignment (SPUA) framework, that takes large-scale spatial power user/substation distribution data and temporal user power consumption data as input, and assigns users to substations, in a manner that minimizes the maximum substation utilization among all substations. To evaluate the performance of our SPUA framework, we conduct evaluations on real power consumption data and user/substation location data collected from a province in China for 35 days in 2015. The evaluation results demonstrate that our SPUA framework can achieve a 20%--65% reduction on the maximum substation utilization, and 2 to 3.7 times reduction on total transmission loss over other baseline methods.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Scalable user assignment in power grids: a data driven approach\",\"authors\":\"Bo Lyu, Shijian Li, Yanhua Li, Jie Fu, Andrew C. Trapp, Haiyong Xie, Yong Liao\",\"doi\":\"10.1145/2996913.2996970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fast pace of global urbanization is drastically changing the population distributions over the world, which leads to significant changes in geographical population densities. Such changes in turn alter the underlying geographical power demand over time, and drive power substations to become over-supplied (demand << capacity) or under-supplied (demand ≈ capacity). In this paper, we make the first attempt to investigate the problem of power substation-user assignment by analyzing large-scale power grid data. We develop a Scalable Power User Assignment (SPUA) framework, that takes large-scale spatial power user/substation distribution data and temporal user power consumption data as input, and assigns users to substations, in a manner that minimizes the maximum substation utilization among all substations. To evaluate the performance of our SPUA framework, we conduct evaluations on real power consumption data and user/substation location data collected from a province in China for 35 days in 2015. The evaluation results demonstrate that our SPUA framework can achieve a 20%--65% reduction on the maximum substation utilization, and 2 to 3.7 times reduction on total transmission loss over other baseline methods.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

全球城市化的快速发展正在极大地改变世界人口分布,从而导致地理人口密度的显著变化。随着时间的推移,这些变化反过来改变了潜在的地理电力需求,并推动变电站成为供过于求(需求<<容量)或供过于求(需求≈容量)。本文首次尝试通过对大规模电网数据的分析来研究变电站用户分配问题。我们开发了一个可扩展的电力用户分配(SPUA)框架,该框架将大规模的空间电力用户/变电站分布数据和时间用户功耗数据作为输入,并将用户分配到变电站,以最小化所有变电站的最大变电站利用率的方式。为了评估SPUA框架的性能,我们对2015年在中国某省收集的35天的实际用电量数据和用户/变电站位置数据进行了评估。评估结果表明,与其他基准方法相比,我们的SPUA框架可以将最大变电站利用率降低20%- 65%,并将总传输损耗降低2至3.7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable user assignment in power grids: a data driven approach
The fast pace of global urbanization is drastically changing the population distributions over the world, which leads to significant changes in geographical population densities. Such changes in turn alter the underlying geographical power demand over time, and drive power substations to become over-supplied (demand << capacity) or under-supplied (demand ≈ capacity). In this paper, we make the first attempt to investigate the problem of power substation-user assignment by analyzing large-scale power grid data. We develop a Scalable Power User Assignment (SPUA) framework, that takes large-scale spatial power user/substation distribution data and temporal user power consumption data as input, and assigns users to substations, in a manner that minimizes the maximum substation utilization among all substations. To evaluate the performance of our SPUA framework, we conduct evaluations on real power consumption data and user/substation location data collected from a province in China for 35 days in 2015. The evaluation results demonstrate that our SPUA framework can achieve a 20%--65% reduction on the maximum substation utilization, and 2 to 3.7 times reduction on total transmission loss over other baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Location corroborations by mobile devices without traces Knowledge-based trajectory completion from sparse GPS samples Particle filter for real-time human mobility prediction following unprecedented disaster Pyspatiotemporalgeom: a python library for spatiotemporal types and operations Fast transportation network traversal with hyperedges: (industrial paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1