多视点变换域Wyner-Ziv视频编码的相关噪声建模

Catarina Brites, F. Pereira
{"title":"多视点变换域Wyner-Ziv视频编码的相关噪声建模","authors":"Catarina Brites, F. Pereira","doi":"10.1109/ICIP.2014.7025648","DOIUrl":null,"url":null,"abstract":"Multiview Wyner-Ziv (MV-WZ) video coding rate-distortion (RD) performance is highly influenced by the adopted correlation noise model (CNM). In the related literature, the statistics of the correlation noise between the original frame and the side information (SI), typically resulting from the fusion of temporally and inter-view created SIs, is modelled by a Laplacian distribution. In most cases, the Laplacian CNM parameter is estimated using an offline approach, assuming that either the SI is available at the encoder or the originals are available at the decoder which is not realistic. In this context, this paper proposes the first practical, online CNM solution for a multiview transform domain WZ (MV-TDWZ) video codec. The online estimation of the Laplacian CNM parameter is performed at the decoder based on metrics exploring both the temporal and inter-view correlations with two levels of granularity, notably transform band and transform coefficient. The results obtained show that better RD performance is achieved for the finest granularity level since the inter-view, temporal and spatial correlations are exploited with the highest adaptation.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Correlation noise modeling for multiview transform domain Wyner-Ziv video coding\",\"authors\":\"Catarina Brites, F. Pereira\",\"doi\":\"10.1109/ICIP.2014.7025648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiview Wyner-Ziv (MV-WZ) video coding rate-distortion (RD) performance is highly influenced by the adopted correlation noise model (CNM). In the related literature, the statistics of the correlation noise between the original frame and the side information (SI), typically resulting from the fusion of temporally and inter-view created SIs, is modelled by a Laplacian distribution. In most cases, the Laplacian CNM parameter is estimated using an offline approach, assuming that either the SI is available at the encoder or the originals are available at the decoder which is not realistic. In this context, this paper proposes the first practical, online CNM solution for a multiview transform domain WZ (MV-TDWZ) video codec. The online estimation of the Laplacian CNM parameter is performed at the decoder based on metrics exploring both the temporal and inter-view correlations with two levels of granularity, notably transform band and transform coefficient. The results obtained show that better RD performance is achieved for the finest granularity level since the inter-view, temporal and spatial correlations are exploited with the highest adaptation.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多视点Wyner-Ziv (MV-WZ)视频编码率失真(RD)性能受到所采用的相关噪声模型(CNM)的高度影响。在相关文献中,原始帧和侧信息(SI)之间的相关噪声的统计,通常是由时间和内部视图创建的SI融合产生的,用拉普拉斯分布建模。在大多数情况下,拉普拉斯CNM参数是使用离线方法估计的,假设SI在编码器处可用,或者原件在解码器处可用,这是不现实的。在此背景下,本文提出了第一个实用的多视点变换域WZ (MV-TDWZ)视频编解码器的在线CNM解决方案。拉普拉斯CNM参数的在线估计是在解码器上进行的,基于度量,探索两个粒度级别的时间和视图间相关性,特别是变换频带和变换系数。结果表明,在最细的粒度水平上,由于利用了视间相关性、时间相关性和空间相关性,具有最高的适应性,因此可以获得更好的RD性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correlation noise modeling for multiview transform domain Wyner-Ziv video coding
Multiview Wyner-Ziv (MV-WZ) video coding rate-distortion (RD) performance is highly influenced by the adopted correlation noise model (CNM). In the related literature, the statistics of the correlation noise between the original frame and the side information (SI), typically resulting from the fusion of temporally and inter-view created SIs, is modelled by a Laplacian distribution. In most cases, the Laplacian CNM parameter is estimated using an offline approach, assuming that either the SI is available at the encoder or the originals are available at the decoder which is not realistic. In this context, this paper proposes the first practical, online CNM solution for a multiview transform domain WZ (MV-TDWZ) video codec. The online estimation of the Laplacian CNM parameter is performed at the decoder based on metrics exploring both the temporal and inter-view correlations with two levels of granularity, notably transform band and transform coefficient. The results obtained show that better RD performance is achieved for the finest granularity level since the inter-view, temporal and spatial correlations are exploited with the highest adaptation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1