可解释人工智能的历史视角

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery Pub Date : 2020-10-19 DOI:10.1002/widm.1391
R. Confalonieri, Ludovik Çoba, Benedikt Wagner, Tarek R. Besold
{"title":"可解释人工智能的历史视角","authors":"R. Confalonieri, Ludovik Çoba, Benedikt Wagner, Tarek R. Besold","doi":"10.1002/widm.1391","DOIUrl":null,"url":null,"abstract":"Explainability in Artificial Intelligence (AI) has been revived as a topic of active research by the need of conveying safety and trust to users in the “how” and “why” of automated decision‐making in different applications such as autonomous driving, medical diagnosis, or banking and finance. While explainability in AI has recently received significant attention, the origins of this line of work go back several decades to when AI systems were mainly developed as (knowledge‐based) expert systems. Since then, the definition, understanding, and implementation of explainability have been picked up in several lines of research work, namely, expert systems, machine learning, recommender systems, and in approaches to neural‐symbolic learning and reasoning, mostly happening during different periods of AI history. In this article, we present a historical perspective of Explainable Artificial Intelligence. We discuss how explainability was mainly conceived in the past, how it is understood in the present and, how it might be understood in the future. We conclude the article by proposing criteria for explanations that we believe will play a crucial role in the development of human‐understandable explainable systems.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"39 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":"{\"title\":\"A historical perspective of explainable Artificial Intelligence\",\"authors\":\"R. Confalonieri, Ludovik Çoba, Benedikt Wagner, Tarek R. Besold\",\"doi\":\"10.1002/widm.1391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explainability in Artificial Intelligence (AI) has been revived as a topic of active research by the need of conveying safety and trust to users in the “how” and “why” of automated decision‐making in different applications such as autonomous driving, medical diagnosis, or banking and finance. While explainability in AI has recently received significant attention, the origins of this line of work go back several decades to when AI systems were mainly developed as (knowledge‐based) expert systems. Since then, the definition, understanding, and implementation of explainability have been picked up in several lines of research work, namely, expert systems, machine learning, recommender systems, and in approaches to neural‐symbolic learning and reasoning, mostly happening during different periods of AI history. In this article, we present a historical perspective of Explainable Artificial Intelligence. We discuss how explainability was mainly conceived in the past, how it is understood in the present and, how it might be understood in the future. We conclude the article by proposing criteria for explanations that we believe will play a crucial role in the development of human‐understandable explainable systems.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"134\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1391\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1391","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 134

摘要

人工智能(AI)的可解释性已经成为一个活跃的研究主题,因为需要在自动驾驶、医疗诊断、银行和金融等不同应用中,向用户传达自动化决策的“如何”和“为什么”的安全性和信任。虽然人工智能的可解释性最近受到了极大的关注,但这条工作线的起源可以追溯到几十年前,当时人工智能系统主要是作为(基于知识的)专家系统开发的。从那时起,可解释性的定义、理解和实现已经在几个研究工作领域中出现,即专家系统、机器学习、推荐系统以及神经符号学习和推理方法,主要发生在人工智能历史的不同时期。在这篇文章中,我们提出了可解释的人工智能的历史观点。我们将讨论可解释性在过去是如何被构想出来的,它在现在是如何被理解的,以及它在未来可能是如何被理解的。我们通过提出解释标准来结束本文,我们认为这些标准将在人类可理解的可解释系统的发展中发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A historical perspective of explainable Artificial Intelligence
Explainability in Artificial Intelligence (AI) has been revived as a topic of active research by the need of conveying safety and trust to users in the “how” and “why” of automated decision‐making in different applications such as autonomous driving, medical diagnosis, or banking and finance. While explainability in AI has recently received significant attention, the origins of this line of work go back several decades to when AI systems were mainly developed as (knowledge‐based) expert systems. Since then, the definition, understanding, and implementation of explainability have been picked up in several lines of research work, namely, expert systems, machine learning, recommender systems, and in approaches to neural‐symbolic learning and reasoning, mostly happening during different periods of AI history. In this article, we present a historical perspective of Explainable Artificial Intelligence. We discuss how explainability was mainly conceived in the past, how it is understood in the present and, how it might be understood in the future. We conclude the article by proposing criteria for explanations that we believe will play a crucial role in the development of human‐understandable explainable systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
期刊最新文献
Research on mining software repositories to facilitate refactoring Use of artificial intelligence algorithms to predict systemic diseases from retinal images The benefits and dangers of using machine learning to support making legal predictions Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective ExplainFix: Explainable spatially fixed deep networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1