用于火灾监测的无人机控制

Nikolay V. Kim, M. I. Mokrova, N. A. Mikhailov
{"title":"用于火灾监测的无人机控制","authors":"Nikolay V. Kim, M. I. Mokrova, N. A. Mikhailov","doi":"10.1109/DeSE.2019.00021","DOIUrl":null,"url":null,"abstract":"Control of an unmanned vehicle equipped with a synthetic vision system intended for the search of people, machinery, and other objects in a wildfire have been discussed in this article. The article describes methods for selecting UAV trajectory and altitude when searching for ground objects taking into account monitoring conditions and requirements for object detection probability as well as UAV flight safety. The efficiency of the algorithms proposed has been proved by computational modeling results.","PeriodicalId":6632,"journal":{"name":"2019 12th International Conference on Developments in eSystems Engineering (DeSE)","volume":"25 1","pages":"60-63"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Control of an UAV for Fire Monitoring\",\"authors\":\"Nikolay V. Kim, M. I. Mokrova, N. A. Mikhailov\",\"doi\":\"10.1109/DeSE.2019.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control of an unmanned vehicle equipped with a synthetic vision system intended for the search of people, machinery, and other objects in a wildfire have been discussed in this article. The article describes methods for selecting UAV trajectory and altitude when searching for ground objects taking into account monitoring conditions and requirements for object detection probability as well as UAV flight safety. The efficiency of the algorithms proposed has been proved by computational modeling results.\",\"PeriodicalId\":6632,\"journal\":{\"name\":\"2019 12th International Conference on Developments in eSystems Engineering (DeSE)\",\"volume\":\"25 1\",\"pages\":\"60-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 12th International Conference on Developments in eSystems Engineering (DeSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DeSE.2019.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th International Conference on Developments in eSystems Engineering (DeSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DeSE.2019.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了一种配备了合成视觉系统的无人驾驶车辆的控制,该系统用于在野火中搜索人员、机械和其他物体。本文介绍了无人机在搜索地物时,考虑监控条件和目标探测概率要求以及无人机飞行安全,选择轨迹和高度的方法。计算建模结果证明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control of an UAV for Fire Monitoring
Control of an unmanned vehicle equipped with a synthetic vision system intended for the search of people, machinery, and other objects in a wildfire have been discussed in this article. The article describes methods for selecting UAV trajectory and altitude when searching for ground objects taking into account monitoring conditions and requirements for object detection probability as well as UAV flight safety. The efficiency of the algorithms proposed has been proved by computational modeling results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fresh and Mechanical Properties of Self-Compacting Lightweight Concrete Containing Ponza Aggregates LPLian: Angle-Constrained Path Finding in Dynamic Grids The Sentiment Analysis of Unstructured Social Network Data Using the Extended Ontology SentiWordNet Investigation of IDC Structures for Graphene Based Biosensors Using Low Frequency EIS Method Comparing Unsupervised Layers in Neural Networks for Financial Time Series Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1