R. Dunne, Oludamilare Matthews, Julio Vega, Simon Harper, Tim Morris
{"title":"智能环境中预测人类行为的计算方法","authors":"R. Dunne, Oludamilare Matthews, Julio Vega, Simon Harper, Tim Morris","doi":"10.3233/ais-210384","DOIUrl":null,"url":null,"abstract":"This systematic literature review presents the computational methods of human behaviour prediction research from Pentland and Liu’s seminal 1999 paper on human behaviour prediction to the latest research to date. The PRISMA framework for systematic reviews was used as the review methodology to structure this information aggregation. This review provides a high-level summary of the field with key areas identified for new research. The results show that there are frequently used datasets for training predictive models: MavHome, MavLab, LIARA, CASAS, PlaceLab, and REDD. Accuracies in the range of 43.9% to 100% for predictions of varying complexity. Common data structures for modelling behavioural data: Vectors, tables, trees, Markov models, and graphs. Algorithms that fall into three distinct categories: Machine Learning (NN, RL, LSTM), Probabilistic Graphical Models (namely Bayesian and Markov variants), and Statistical and Trend Analysis (ARIMA, Prophet). Additionally, we document other notably useful algorithms that fall outside of these three main categories including Jaro-Winkler and Levenshtein distances. Opportunities identified for further research include the use of audio as the data source for behaviour prediction methods, and applying times-series prediction machine learning algorithms (RNN, LSTM) to the smart home problem space.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"116 1","pages":"179-205"},"PeriodicalIF":1.8000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational methods for predicting human behaviour in smart environments\",\"authors\":\"R. Dunne, Oludamilare Matthews, Julio Vega, Simon Harper, Tim Morris\",\"doi\":\"10.3233/ais-210384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This systematic literature review presents the computational methods of human behaviour prediction research from Pentland and Liu’s seminal 1999 paper on human behaviour prediction to the latest research to date. The PRISMA framework for systematic reviews was used as the review methodology to structure this information aggregation. This review provides a high-level summary of the field with key areas identified for new research. The results show that there are frequently used datasets for training predictive models: MavHome, MavLab, LIARA, CASAS, PlaceLab, and REDD. Accuracies in the range of 43.9% to 100% for predictions of varying complexity. Common data structures for modelling behavioural data: Vectors, tables, trees, Markov models, and graphs. Algorithms that fall into three distinct categories: Machine Learning (NN, RL, LSTM), Probabilistic Graphical Models (namely Bayesian and Markov variants), and Statistical and Trend Analysis (ARIMA, Prophet). Additionally, we document other notably useful algorithms that fall outside of these three main categories including Jaro-Winkler and Levenshtein distances. Opportunities identified for further research include the use of audio as the data source for behaviour prediction methods, and applying times-series prediction machine learning algorithms (RNN, LSTM) to the smart home problem space.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"116 1\",\"pages\":\"179-205\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ais-210384\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-210384","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Computational methods for predicting human behaviour in smart environments
This systematic literature review presents the computational methods of human behaviour prediction research from Pentland and Liu’s seminal 1999 paper on human behaviour prediction to the latest research to date. The PRISMA framework for systematic reviews was used as the review methodology to structure this information aggregation. This review provides a high-level summary of the field with key areas identified for new research. The results show that there are frequently used datasets for training predictive models: MavHome, MavLab, LIARA, CASAS, PlaceLab, and REDD. Accuracies in the range of 43.9% to 100% for predictions of varying complexity. Common data structures for modelling behavioural data: Vectors, tables, trees, Markov models, and graphs. Algorithms that fall into three distinct categories: Machine Learning (NN, RL, LSTM), Probabilistic Graphical Models (namely Bayesian and Markov variants), and Statistical and Trend Analysis (ARIMA, Prophet). Additionally, we document other notably useful algorithms that fall outside of these three main categories including Jaro-Winkler and Levenshtein distances. Opportunities identified for further research include the use of audio as the data source for behaviour prediction methods, and applying times-series prediction machine learning algorithms (RNN, LSTM) to the smart home problem space.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.