{"title":"心血管支架制造技术及材料综述","authors":"B. Polanec, J. Kramberger, S. Glodež","doi":"10.14743/apem2020.4.373","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to give a general overview of the production technologies of stents with consideration of their design and materials. Since the beginning of the use of stents in medicine for atherosclerosis treatment, their development has changed rapidly. Various stents have also been developed with the development of materials science, treatment techniques and new manufacturing processes. In this way the development has shifted from the initial bare-metal stents (BMS), to drug-eluting stents (DES) and bio-resorbable stents (BRS), which are made of biodegradable polymers or metals. Various studies agree that it will be necessary to further review the experimentally obtained material properties with analytical and numerical studies. Here, the computational modelling (Finite element analysis - FEA and Computational fluid dynamics - CFD) was found as a valuable tool when evaluating stent mechanics and optimizing stent design. The development of the stent manufacturing technologies has also changed and been supplemented over the years. Nowadays, 3D printing could be an exciting manufacturing method to produce polymeric bio-materials, suitable for the latest generation of bio-degradable stents applications.","PeriodicalId":48763,"journal":{"name":"Advances in Production Engineering & Management","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A review of production technologies and materials for manufacturing of cardiovascular stents\",\"authors\":\"B. Polanec, J. Kramberger, S. Glodež\",\"doi\":\"10.14743/apem2020.4.373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to give a general overview of the production technologies of stents with consideration of their design and materials. Since the beginning of the use of stents in medicine for atherosclerosis treatment, their development has changed rapidly. Various stents have also been developed with the development of materials science, treatment techniques and new manufacturing processes. In this way the development has shifted from the initial bare-metal stents (BMS), to drug-eluting stents (DES) and bio-resorbable stents (BRS), which are made of biodegradable polymers or metals. Various studies agree that it will be necessary to further review the experimentally obtained material properties with analytical and numerical studies. Here, the computational modelling (Finite element analysis - FEA and Computational fluid dynamics - CFD) was found as a valuable tool when evaluating stent mechanics and optimizing stent design. The development of the stent manufacturing technologies has also changed and been supplemented over the years. Nowadays, 3D printing could be an exciting manufacturing method to produce polymeric bio-materials, suitable for the latest generation of bio-degradable stents applications.\",\"PeriodicalId\":48763,\"journal\":{\"name\":\"Advances in Production Engineering & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Production Engineering & Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.14743/apem2020.4.373\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Production Engineering & Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.14743/apem2020.4.373","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A review of production technologies and materials for manufacturing of cardiovascular stents
The purpose of this article is to give a general overview of the production technologies of stents with consideration of their design and materials. Since the beginning of the use of stents in medicine for atherosclerosis treatment, their development has changed rapidly. Various stents have also been developed with the development of materials science, treatment techniques and new manufacturing processes. In this way the development has shifted from the initial bare-metal stents (BMS), to drug-eluting stents (DES) and bio-resorbable stents (BRS), which are made of biodegradable polymers or metals. Various studies agree that it will be necessary to further review the experimentally obtained material properties with analytical and numerical studies. Here, the computational modelling (Finite element analysis - FEA and Computational fluid dynamics - CFD) was found as a valuable tool when evaluating stent mechanics and optimizing stent design. The development of the stent manufacturing technologies has also changed and been supplemented over the years. Nowadays, 3D printing could be an exciting manufacturing method to produce polymeric bio-materials, suitable for the latest generation of bio-degradable stents applications.
期刊介绍:
Advances in Production Engineering & Management (APEM journal) is an interdisciplinary international academic journal published quarterly. The main goal of the APEM journal is to present original, high quality, theoretical and application-oriented research developments in all areas of production engineering and production management to a broad audience of academics and practitioners. In order to bridge the gap between theory and practice, applications based on advanced theory and case studies are particularly welcome. For theoretical papers, their originality and research contributions are the main factors in the evaluation process. General approaches, formalisms, algorithms or techniques should be illustrated with significant applications that demonstrate their applicability to real-world problems. Please note the APEM journal is not intended especially for studying problems in the finance, economics, business, and bank sectors even though the methodology in the paper is quality/project management oriented. Therefore, the papers should include a substantial level of engineering issues in the field of manufacturing engineering.