Zerouali Madiha, Daira Radouane, Bouras Dikra, Bouzid Boudjema, Regis Barille
{"title":"旋涂法制备掺银CuO活性层光催化降解橙ⅱ","authors":"Zerouali Madiha, Daira Radouane, Bouras Dikra, Bouzid Boudjema, Regis Barille","doi":"10.4028/p-BXl5AO","DOIUrl":null,"url":null,"abstract":"In this work we studied the effect of doping on heterogeneous photocatalysis application we used the samples CuO, 5% Ag:CuO, 15% Ag:CuO, 25% Ag:CuO and 50% Ag:CuO catalysts thin layers which were prepared by the sol gel method on a glass substrate. The structural, morphological, optical and electrical characteristics of these layers were studied by XRD, IR, SEM, UV-Vis spectrophotometry and four-point analysis. The results of the XRD, it is observed that the structure of the monoclinic phase develops, with preferential orientations following the plane (-111). This indicated that the thin films are polycrystalline, these results and confirmed by the IR spectra. In the case of Ag doping the SEM revealed the creation of pores on the surface of the samples, which enhanced the degradation of orange II under UV light. The gap energy decreases from 2.17 eV to 1.25 eV with increasing doping. These results show that thin films doped with Ag exhibit a higher degradation than that obtained by pure CuO. After 5 hours in the case of doping with 50% Ag the percentage of degradation is 43%, on the other hand in the pure case the percentage of degradation is 27%.With this, it can be said that 50% Ag:CuO is a good catalyst because the sample has pores, and therefore a larger catalytic area. Creating pores on the surface of the samples, obtaining a less energy gap enables the creation of a greater number of •Oand OH• that works to disintegrate the dye and give the white color to the solution.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"108 1","pages":"1 - 19"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Photocatalytic Degradation of Orange II by Active Layers of Ag-Doped CuO Deposited by Spin-Coating Method\",\"authors\":\"Zerouali Madiha, Daira Radouane, Bouras Dikra, Bouzid Boudjema, Regis Barille\",\"doi\":\"10.4028/p-BXl5AO\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we studied the effect of doping on heterogeneous photocatalysis application we used the samples CuO, 5% Ag:CuO, 15% Ag:CuO, 25% Ag:CuO and 50% Ag:CuO catalysts thin layers which were prepared by the sol gel method on a glass substrate. The structural, morphological, optical and electrical characteristics of these layers were studied by XRD, IR, SEM, UV-Vis spectrophotometry and four-point analysis. The results of the XRD, it is observed that the structure of the monoclinic phase develops, with preferential orientations following the plane (-111). This indicated that the thin films are polycrystalline, these results and confirmed by the IR spectra. In the case of Ag doping the SEM revealed the creation of pores on the surface of the samples, which enhanced the degradation of orange II under UV light. The gap energy decreases from 2.17 eV to 1.25 eV with increasing doping. These results show that thin films doped with Ag exhibit a higher degradation than that obtained by pure CuO. After 5 hours in the case of doping with 50% Ag the percentage of degradation is 43%, on the other hand in the pure case the percentage of degradation is 27%.With this, it can be said that 50% Ag:CuO is a good catalyst because the sample has pores, and therefore a larger catalytic area. Creating pores on the surface of the samples, obtaining a less energy gap enables the creation of a greater number of •Oand OH• that works to disintegrate the dye and give the white color to the solution.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":\"108 1\",\"pages\":\"1 - 19\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-BXl5AO\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-BXl5AO","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Photocatalytic Degradation of Orange II by Active Layers of Ag-Doped CuO Deposited by Spin-Coating Method
In this work we studied the effect of doping on heterogeneous photocatalysis application we used the samples CuO, 5% Ag:CuO, 15% Ag:CuO, 25% Ag:CuO and 50% Ag:CuO catalysts thin layers which were prepared by the sol gel method on a glass substrate. The structural, morphological, optical and electrical characteristics of these layers were studied by XRD, IR, SEM, UV-Vis spectrophotometry and four-point analysis. The results of the XRD, it is observed that the structure of the monoclinic phase develops, with preferential orientations following the plane (-111). This indicated that the thin films are polycrystalline, these results and confirmed by the IR spectra. In the case of Ag doping the SEM revealed the creation of pores on the surface of the samples, which enhanced the degradation of orange II under UV light. The gap energy decreases from 2.17 eV to 1.25 eV with increasing doping. These results show that thin films doped with Ag exhibit a higher degradation than that obtained by pure CuO. After 5 hours in the case of doping with 50% Ag the percentage of degradation is 43%, on the other hand in the pure case the percentage of degradation is 27%.With this, it can be said that 50% Ag:CuO is a good catalyst because the sample has pores, and therefore a larger catalytic area. Creating pores on the surface of the samples, obtaining a less energy gap enables the creation of a greater number of •Oand OH• that works to disintegrate the dye and give the white color to the solution.
期刊介绍:
"Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results.
"Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited.
Authors retain the right to publish an extended and significantly updated version in another periodical.