{"title":"优化lustre文件系统的快速查询性能","authors":"Kuan-Wu Lin, S. Byna, J. Chou, Kesheng Wu","doi":"10.1145/2484838.2484853","DOIUrl":null,"url":null,"abstract":"FastQuery is a parallel indexing and querying system we developed for accelerating analysis and visualization of scientific data. We have applied it to a wide variety of HPC applications and demonstrated its capability and scalability using a petascale trillion-particle simulation in our previous work. Yet, through our experience, we found that performance of reading and writing data with FastQuery, like many other HPC applications, could be significantly affected by various tunable parameters throughout the parallel I/O stack. In this paper, we describe our success in tuning the performance of FastQuery on a Lustre parallel file system. We study and analyze the impact of parameters and tunable settings at file system, MPI-IO library, and HDF5 library levels of the I/O stack. We demonstrate that a combined optimization strategy is able to improve performance and I/O bandwidth of FastQuery significantly. In our tests with a trillion-particle dataset, the time to index the dataset reduced by more than one half.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"35 1","pages":"29:1-29:12"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimizing fastquery performance on lustre file system\",\"authors\":\"Kuan-Wu Lin, S. Byna, J. Chou, Kesheng Wu\",\"doi\":\"10.1145/2484838.2484853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FastQuery is a parallel indexing and querying system we developed for accelerating analysis and visualization of scientific data. We have applied it to a wide variety of HPC applications and demonstrated its capability and scalability using a petascale trillion-particle simulation in our previous work. Yet, through our experience, we found that performance of reading and writing data with FastQuery, like many other HPC applications, could be significantly affected by various tunable parameters throughout the parallel I/O stack. In this paper, we describe our success in tuning the performance of FastQuery on a Lustre parallel file system. We study and analyze the impact of parameters and tunable settings at file system, MPI-IO library, and HDF5 library levels of the I/O stack. We demonstrate that a combined optimization strategy is able to improve performance and I/O bandwidth of FastQuery significantly. In our tests with a trillion-particle dataset, the time to index the dataset reduced by more than one half.\",\"PeriodicalId\":74773,\"journal\":{\"name\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"volume\":\"35 1\",\"pages\":\"29:1-29:12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2484838.2484853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484838.2484853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

FastQuery是我们开发的一个并行索引和查询系统,用于加速科学数据的分析和可视化。我们已经将其应用于各种HPC应用,并在我们之前的工作中使用千万亿次的万亿粒子模拟展示了它的能力和可扩展性。然而,根据我们的经验,我们发现,与许多其他HPC应用程序一样,使用FastQuery读写数据的性能可能会受到整个并行I/O堆栈中的各种可调参数的显著影响。在本文中,我们描述了在Lustre并行文件系统上成功调优FastQuery的性能。我们研究和分析了I/O堆栈的文件系统、MPI-IO库和HDF5库级别的参数和可调设置的影响。我们证明了一种组合优化策略能够显著提高FastQuery的性能和I/O带宽。在我们的测试中,有1万亿个粒子的数据集,索引数据集的时间减少了一半以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing fastquery performance on lustre file system
FastQuery is a parallel indexing and querying system we developed for accelerating analysis and visualization of scientific data. We have applied it to a wide variety of HPC applications and demonstrated its capability and scalability using a petascale trillion-particle simulation in our previous work. Yet, through our experience, we found that performance of reading and writing data with FastQuery, like many other HPC applications, could be significantly affected by various tunable parameters throughout the parallel I/O stack. In this paper, we describe our success in tuning the performance of FastQuery on a Lustre parallel file system. We study and analyze the impact of parameters and tunable settings at file system, MPI-IO library, and HDF5 library levels of the I/O stack. We demonstrate that a combined optimization strategy is able to improve performance and I/O bandwidth of FastQuery significantly. In our tests with a trillion-particle dataset, the time to index the dataset reduced by more than one half.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1