网络流量的数学分析

S. Mian, M. Ghassempoory, M. Bentall
{"title":"网络流量的数学分析","authors":"S. Mian, M. Ghassempoory, M. Bentall","doi":"10.1109/SCORED.2002.1033104","DOIUrl":null,"url":null,"abstract":"The level of complexity in computer networks is rising and the mathematics needed to model the network traffic behaviour is not an exact science. This paper aims to bridge the gap between mathematics and engineering by illustrating some of the problems that exist with conventional traffic modeling, and show how to obtain informative network statistics via mathematical tools such as the Hurst (1951) parameter and the autocorrelation function. We show how aggregated traffic behaves over various time scales and focus on certain protocols to observe their impact on the network at various ingress/egress points on our university network. Furthermore, we present the many analytical tools that are useful in characterising these systems.","PeriodicalId":6865,"journal":{"name":"2016 IEEE Student Conference on Research and Development (SCOReD)","volume":"26 1","pages":"249-252"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mathematical analysis of network traffic\",\"authors\":\"S. Mian, M. Ghassempoory, M. Bentall\",\"doi\":\"10.1109/SCORED.2002.1033104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The level of complexity in computer networks is rising and the mathematics needed to model the network traffic behaviour is not an exact science. This paper aims to bridge the gap between mathematics and engineering by illustrating some of the problems that exist with conventional traffic modeling, and show how to obtain informative network statistics via mathematical tools such as the Hurst (1951) parameter and the autocorrelation function. We show how aggregated traffic behaves over various time scales and focus on certain protocols to observe their impact on the network at various ingress/egress points on our university network. Furthermore, we present the many analytical tools that are useful in characterising these systems.\",\"PeriodicalId\":6865,\"journal\":{\"name\":\"2016 IEEE Student Conference on Research and Development (SCOReD)\",\"volume\":\"26 1\",\"pages\":\"249-252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Student Conference on Research and Development (SCOReD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCORED.2002.1033104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCORED.2002.1033104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

计算机网络的复杂程度正在上升,而为网络流量行为建模所需的数学并不是一门精确的科学。本文旨在通过说明传统交通建模存在的一些问题,弥合数学与工程之间的差距,并展示如何通过Hurst(1951)参数和自相关函数等数学工具获得信息网络统计。我们展示了聚合流量在不同时间尺度上的行为,并重点关注某些协议,以观察它们在我们大学网络的不同入口/出口点对网络的影响。此外,我们提出了许多分析工具,是有用的表征这些系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematical analysis of network traffic
The level of complexity in computer networks is rising and the mathematics needed to model the network traffic behaviour is not an exact science. This paper aims to bridge the gap between mathematics and engineering by illustrating some of the problems that exist with conventional traffic modeling, and show how to obtain informative network statistics via mathematical tools such as the Hurst (1951) parameter and the autocorrelation function. We show how aggregated traffic behaves over various time scales and focus on certain protocols to observe their impact on the network at various ingress/egress points on our university network. Furthermore, we present the many analytical tools that are useful in characterising these systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel pedestrian detection and tracking with boosted HOG classifiers and Kalman filter Advanced inter-cell interference management technologies in 5G wireless Heterogeneous Networks (HetNets) Intelligent automatic starting engine based on voice recognition system Development of algorithm to characterize flavonoids classes Effect of substrates temperature on structural and optical properties indium tin oxide prepared by RF magnetron sputtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1