超临界CO2循环与ORC联合余热回收的优化

R. Carapellucci, D. Di Battista
{"title":"超临界CO2循环与ORC联合余热回收的优化","authors":"R. Carapellucci, D. Di Battista","doi":"10.1115/imece2022-95106","DOIUrl":null,"url":null,"abstract":"\n Waste heat recovery is a broadly considered opportunity for efficiency improvement in several energy consumption sectors, intending to reduce energy consumption and related carbon dioxide emissions to the atmosphere. The attention of research activities is focused on transportation and residential sectors, where the possible recovery is characterized by low enthalpy, but with a wider potential market. Therefore, the maximization of recovery is one of the principal aims of this option, and different kinds of technologies have been proposed in this regard. Thermodynamic cycles, which exploit the waste heat considering it as the upper thermal source, seem to be a promising option, and the possibility to combine two different cycles can increase the thermal power harvested.\n In this paper, a combination of a supercritical CO2 Brayton cycle with an ORC-based unit has been proposed to recover waste heat from the exhaust gases of an internal combustion engine for the transportation sector. Using CO2 as working fluid is under investigation in literature, for its low Global Warming Potential and its suitable thermodynamic characteristics in dense phase (just above the critical point). An Organic Rankine Cycle (ORC), then, has been bottomed to the CO2 section, to further recover thermal energy and convert it into mechanical useful work. Indeed, the CO2 cycle must have a lower temperature cold sink, where thermal power can be furtherly recovered. The introduction of this second stage of recovery interacts with the upper one, modifying the overall optimization parameters. Hence, this work aims to find the maximization of the recovery from a global point-of-view, identifying possible trade-offs happenings between the two recovery sections. Minimum sCO2 pressure, stack exhaust temperature, and the possibility to have a regeneration stage have been considered as optimizing parameters.\n Finally, the optimized system has been applied to a specific mission profile of a commercial vehicle, in order to evaluate the recovery potential during a realistic engine working points sequence. A recovery higher than 4% in every mission considered has been achieved, with values up to 7% in motorway and long-hauling conditions.","PeriodicalId":23629,"journal":{"name":"Volume 6: Energy","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Supercritical CO2 Cycle Combined With ORC for Waste Heat Recovery\",\"authors\":\"R. Carapellucci, D. Di Battista\",\"doi\":\"10.1115/imece2022-95106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Waste heat recovery is a broadly considered opportunity for efficiency improvement in several energy consumption sectors, intending to reduce energy consumption and related carbon dioxide emissions to the atmosphere. The attention of research activities is focused on transportation and residential sectors, where the possible recovery is characterized by low enthalpy, but with a wider potential market. Therefore, the maximization of recovery is one of the principal aims of this option, and different kinds of technologies have been proposed in this regard. Thermodynamic cycles, which exploit the waste heat considering it as the upper thermal source, seem to be a promising option, and the possibility to combine two different cycles can increase the thermal power harvested.\\n In this paper, a combination of a supercritical CO2 Brayton cycle with an ORC-based unit has been proposed to recover waste heat from the exhaust gases of an internal combustion engine for the transportation sector. Using CO2 as working fluid is under investigation in literature, for its low Global Warming Potential and its suitable thermodynamic characteristics in dense phase (just above the critical point). An Organic Rankine Cycle (ORC), then, has been bottomed to the CO2 section, to further recover thermal energy and convert it into mechanical useful work. Indeed, the CO2 cycle must have a lower temperature cold sink, where thermal power can be furtherly recovered. The introduction of this second stage of recovery interacts with the upper one, modifying the overall optimization parameters. Hence, this work aims to find the maximization of the recovery from a global point-of-view, identifying possible trade-offs happenings between the two recovery sections. Minimum sCO2 pressure, stack exhaust temperature, and the possibility to have a regeneration stage have been considered as optimizing parameters.\\n Finally, the optimized system has been applied to a specific mission profile of a commercial vehicle, in order to evaluate the recovery potential during a realistic engine working points sequence. A recovery higher than 4% in every mission considered has been achieved, with values up to 7% in motorway and long-hauling conditions.\",\"PeriodicalId\":23629,\"journal\":{\"name\":\"Volume 6: Energy\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-95106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-95106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

废热回收被广泛认为是几个能源消耗部门提高效率的机会,旨在减少能源消耗和相关的二氧化碳排放到大气中。研究活动的注意力集中在运输和住宅部门,这些部门可能的复苏特点是焓低,但潜在市场更广。因此,采收率的最大化是这一选择的主要目标之一,在这方面已经提出了不同类型的技术。热力学循环,利用废热,将其视为上层热源,似乎是一个很有前途的选择,并且结合两个不同循环的可能性可以增加所收集的热功率。在本文中,提出了一种超临界CO2布雷顿循环与orc为基础的装置的组合,以回收内燃机废气中的废热,用于运输部门。由于CO2具有较低的全球变暖潜势,并且在致密相(略高于临界点)具有合适的热力学特性,因此正在对CO2作为工质进行文献研究。然后,一个有机朗肯循环(ORC)已经到达CO2部分的底部,以进一步回收热能并将其转化为机械有用的功。事实上,二氧化碳循环必须有一个温度较低的冷汇,在那里热能可以进一步回收。第二阶段的引入与上一阶段的开采相互作用,修改了整体优化参数。因此,这项工作旨在从全局的角度找到恢复的最大化,确定两个恢复部分之间可能发生的权衡。最小sCO2压力、烟囱排气温度和再生阶段的可能性被考虑为优化参数。最后,将优化后的系统应用于某商用车的具体任务剖面,以评估实际发动机工作点序列下的回收潜力。在考虑的每个任务中,回收率都高于4%,在高速公路和长途运输条件下,回收率高达7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Supercritical CO2 Cycle Combined With ORC for Waste Heat Recovery
Waste heat recovery is a broadly considered opportunity for efficiency improvement in several energy consumption sectors, intending to reduce energy consumption and related carbon dioxide emissions to the atmosphere. The attention of research activities is focused on transportation and residential sectors, where the possible recovery is characterized by low enthalpy, but with a wider potential market. Therefore, the maximization of recovery is one of the principal aims of this option, and different kinds of technologies have been proposed in this regard. Thermodynamic cycles, which exploit the waste heat considering it as the upper thermal source, seem to be a promising option, and the possibility to combine two different cycles can increase the thermal power harvested. In this paper, a combination of a supercritical CO2 Brayton cycle with an ORC-based unit has been proposed to recover waste heat from the exhaust gases of an internal combustion engine for the transportation sector. Using CO2 as working fluid is under investigation in literature, for its low Global Warming Potential and its suitable thermodynamic characteristics in dense phase (just above the critical point). An Organic Rankine Cycle (ORC), then, has been bottomed to the CO2 section, to further recover thermal energy and convert it into mechanical useful work. Indeed, the CO2 cycle must have a lower temperature cold sink, where thermal power can be furtherly recovered. The introduction of this second stage of recovery interacts with the upper one, modifying the overall optimization parameters. Hence, this work aims to find the maximization of the recovery from a global point-of-view, identifying possible trade-offs happenings between the two recovery sections. Minimum sCO2 pressure, stack exhaust temperature, and the possibility to have a regeneration stage have been considered as optimizing parameters. Finally, the optimized system has been applied to a specific mission profile of a commercial vehicle, in order to evaluate the recovery potential during a realistic engine working points sequence. A recovery higher than 4% in every mission considered has been achieved, with values up to 7% in motorway and long-hauling conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ammonia for Industrial Combustion A Method to Account for the Effects of Thermal Osmosis in PEM Fuel Cells Optimization of Supercritical CO2 Cycle Combined With ORC for Waste Heat Recovery Improving the Yield of Biodiesel Production Using Waste Vegetable Oil Considering the Free Fatty Acid Content Flame Propagation Analysis of Anhydrous and Hydrous Ethanol in an Optical Spark Ignition Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1